Variable Hardy spaces on spaces of homogeneous type and applications to variable Hardy spaces associated with elliptic operators having Robin boundary conditions on Lipschitz domains

IF 0.8 3区 数学 Q2 MATHEMATICS
Xiong Liu, Wenhua Wang
{"title":"Variable Hardy spaces on spaces of homogeneous type and applications to variable Hardy spaces associated with elliptic operators having Robin boundary conditions on Lipschitz domains","authors":"Xiong Liu,&nbsp;Wenhua Wang","doi":"10.1002/mana.202400300","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {X},d,\\mu)$</annotation>\n </semantics></math> be a space of homogeneous type with <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\mu (\\mathcal {X})&lt;\\infty$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mo>·</mo>\n <mo>)</mo>\n <mo>:</mo>\n <mi>X</mi>\n <mo>→</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p(\\cdot):\\mathcal {X}\\rightarrow (0,\\infty)$</annotation>\n </semantics></math> a variable exponent function satisfying <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>&lt;</mo>\n <msub>\n <mi>p</mi>\n <mo>−</mo>\n </msub>\n <mo>&lt;</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$0&lt;p_-&lt;\\infty$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>p</mi>\n <mo>−</mo>\n </msub>\n <mo>:</mo>\n <mo>=</mo>\n <mi>ess</mi>\n <mspace></mspace>\n <msub>\n <mi>inf</mi>\n <mrow>\n <mi>x</mi>\n <mo>∈</mo>\n <mi>X</mi>\n </mrow>\n </msub>\n <mi>p</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$p_-:=\\mathrm{ess\\ inf}_{x\\in \\mathcal {X}}p(x)$</annotation>\n </semantics></math>. Assume that <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> is a nonnegative self-adjoint operator on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(\\mathcal {X})$</annotation>\n </semantics></math> whose heat kernels satisfy the Gaussian upper bound estimates. In this paper, the authors first establish the atomic, nontangential, and radial maximal function characterizations for the variable Hardy space <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <mi>L</mi>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mo>·</mo>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^{p(\\cdot)}_{L}(\\mathcal {X})$</annotation>\n </semantics></math> associated with <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>. Second, as applications, when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\ge 2$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\Omega \\subset \\mathbb {R}^n$</annotation>\n </semantics></math> is a bounded Lipschitz domain, <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>R</mi>\n </msub>\n <annotation>$L_R$</annotation>\n </semantics></math> is a second-order divergence form elliptic operator with the Robin boundary condition, the authors establish a new atomic characterization of the <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <msub>\n <mi>L</mi>\n <mi>R</mi>\n </msub>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mo>·</mo>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^{p(\\cdot)}_{L_R}(\\Omega)$</annotation>\n </semantics></math> associated with <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>R</mi>\n </msub>\n <annotation>$L_R$</annotation>\n </semantics></math>, and then the authors further show that, for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>p</mi>\n <mo>−</mo>\n </msub>\n <mo>∈</mo>\n <mrow>\n <mo>(</mo>\n <mfrac>\n <mi>n</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <msub>\n <mi>δ</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n </mfrac>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$p_-\\in (\\frac{n}{n+\\delta _0},1]$</annotation>\n </semantics></math>,\n\n </p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1370-1440"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400300","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ( X , d , μ ) $(\mathcal {X},d,\mu)$ be a space of homogeneous type with μ ( X ) < $\mu (\mathcal {X})<\infty$ and p ( · ) : X ( 0 , ) $p(\cdot):\mathcal {X}\rightarrow (0,\infty)$ a variable exponent function satisfying 0 < p < $0<p_-<\infty$ , where p : = ess inf x X p ( x ) $p_-:=\mathrm{ess\ inf}_{x\in \mathcal {X}}p(x)$ . Assume that L $L$ is a nonnegative self-adjoint operator on L 2 ( X ) $L^2(\mathcal {X})$ whose heat kernels satisfy the Gaussian upper bound estimates. In this paper, the authors first establish the atomic, nontangential, and radial maximal function characterizations for the variable Hardy space H L p ( · ) ( X ) $H^{p(\cdot)}_{L}(\mathcal {X})$ associated with L $L$ . Second, as applications, when n 2 $n\ge 2$ , Ω R n $\Omega \subset \mathbb {R}^n$ is a bounded Lipschitz domain, L R $L_R$ is a second-order divergence form elliptic operator with the Robin boundary condition, the authors establish a new atomic characterization of the H L R p ( · ) ( Ω ) $H^{p(\cdot)}_{L_R}(\Omega)$ associated with L R $L_R$ , and then the authors further show that, for p ( n n + δ 0 , 1 ] $p_-\in (\frac{n}{n+\delta _0},1]$ ,

齐次型空间上的变Hardy空间及其在Lipschitz域上具有Robin边界条件的椭圆算子的变Hardy空间中的应用
设(X, d, μ) $(\mathcal {X},d,\mu)$是具有μ (X) &lt的齐次型空间;∞$\mu (\mathcal {X})<\infty$和p(·):X→(0,∞)$p(\cdot):\mathcal {X}\rightarrow (0,\infty)$满足0 &lt的变指数函数;P−&lt;∞$0<p_-<\infty$,其中p−:= ess ifx∈x p (x) $p_-:=\mathrm{ess\ inf}_{x\in \mathcal {X}}p(x)$。假设L $L$是l2 (X) $L^2(\mathcal {X})$上的非负自伴随算子,其热核满足高斯上界估计。在本文中,作者首先建立了原子的、非切向的、以及变量Hardy空间H L p(·)(X) $H^{p(\cdot)}_{L}(\mathcal {X})$相关的径向极大函数表征with L $L$。第二,作为应用,当n≥2 $n\ge 2$, Ω∧R n $\Omega \subset \mathbb {R}^n$是有界Lipschitz域,L R $L_R$是具有Robin边界条件的二阶发散型椭圆算子,建立了H L R p(·)的新原子表征方法(Ω)。$H^{p(\cdot)}_{L_R}(\Omega)$与L R $L_R$相关,然后作者进一步表明,对于p−∈(n n + δ 0)1] $p_-\in (\frac{n}{n+\delta _0},1]$,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信