Variable Hardy spaces on spaces of homogeneous type and applications to variable Hardy spaces associated with elliptic operators having Robin boundary conditions on Lipschitz domains
{"title":"Variable Hardy spaces on spaces of homogeneous type and applications to variable Hardy spaces associated with elliptic operators having Robin boundary conditions on Lipschitz domains","authors":"Xiong Liu, Wenhua Wang","doi":"10.1002/mana.202400300","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>,</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>μ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\mathcal {X},d,\\mu)$</annotation>\n </semantics></math> be a space of homogeneous type with <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\mu (\\mathcal {X})<\\infty$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mo>·</mo>\n <mo>)</mo>\n <mo>:</mo>\n <mi>X</mi>\n <mo>→</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p(\\cdot):\\mathcal {X}\\rightarrow (0,\\infty)$</annotation>\n </semantics></math> a variable exponent function satisfying <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <msub>\n <mi>p</mi>\n <mo>−</mo>\n </msub>\n <mo><</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$0<p_-<\\infty$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>p</mi>\n <mo>−</mo>\n </msub>\n <mo>:</mo>\n <mo>=</mo>\n <mi>ess</mi>\n <mspace></mspace>\n <msub>\n <mi>inf</mi>\n <mrow>\n <mi>x</mi>\n <mo>∈</mo>\n <mi>X</mi>\n </mrow>\n </msub>\n <mi>p</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$p_-:=\\mathrm{ess\\ inf}_{x\\in \\mathcal {X}}p(x)$</annotation>\n </semantics></math>. Assume that <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math> is a nonnegative self-adjoint operator on <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^2(\\mathcal {X})$</annotation>\n </semantics></math> whose heat kernels satisfy the Gaussian upper bound estimates. In this paper, the authors first establish the atomic, nontangential, and radial maximal function characterizations for the variable Hardy space <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <mi>L</mi>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mo>·</mo>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^{p(\\cdot)}_{L}(\\mathcal {X})$</annotation>\n </semantics></math> associated with <span></span><math>\n <semantics>\n <mi>L</mi>\n <annotation>$L$</annotation>\n </semantics></math>. Second, as applications, when <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n\\ge 2$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\Omega \\subset \\mathbb {R}^n$</annotation>\n </semantics></math> is a bounded Lipschitz domain, <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>R</mi>\n </msub>\n <annotation>$L_R$</annotation>\n </semantics></math> is a second-order divergence form elliptic operator with the Robin boundary condition, the authors establish a new atomic characterization of the <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>H</mi>\n <msub>\n <mi>L</mi>\n <mi>R</mi>\n </msub>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mo>·</mo>\n <mo>)</mo>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$H^{p(\\cdot)}_{L_R}(\\Omega)$</annotation>\n </semantics></math> associated with <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>R</mi>\n </msub>\n <annotation>$L_R$</annotation>\n </semantics></math>, and then the authors further show that, for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>p</mi>\n <mo>−</mo>\n </msub>\n <mo>∈</mo>\n <mrow>\n <mo>(</mo>\n <mfrac>\n <mi>n</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <msub>\n <mi>δ</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n </mfrac>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n </mrow>\n <annotation>$p_-\\in (\\frac{n}{n+\\delta _0},1]$</annotation>\n </semantics></math>,\n\n </p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1370-1440"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400300","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a space of homogeneous type with and a variable exponent function satisfying , where . Assume that is a nonnegative self-adjoint operator on whose heat kernels satisfy the Gaussian upper bound estimates. In this paper, the authors first establish the atomic, nontangential, and radial maximal function characterizations for the variable Hardy space associated with . Second, as applications, when , is a bounded Lipschitz domain, is a second-order divergence form elliptic operator with the Robin boundary condition, the authors establish a new atomic characterization of the associated with , and then the authors further show that, for ,
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index