IF 0.8 3区 数学 Q2 MATHEMATICS
Fabio Bagarello, Hiroshi Inoue, Salvatore Triolo
{"title":"Sesquilinear forms as eigenvectors in quasi *-algebras, with an application to ladder elements","authors":"Fabio Bagarello,&nbsp;Hiroshi Inoue,&nbsp;Salvatore Triolo","doi":"10.1002/mana.202400291","DOIUrl":null,"url":null,"abstract":"<p>We consider a particular class of sesquilinear forms on a Banach quasi *-algebra <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>[</mo>\n <mo>∥</mo>\n <mo>.</mo>\n <mo>∥</mo>\n <mo>]</mo>\n <mo>,</mo>\n </mrow>\n <msub>\n <mi>A</mi>\n <mn>0</mn>\n </msub>\n <msub>\n <mrow>\n <mo>[</mo>\n <mo>∥</mo>\n <mo>.</mo>\n <mo>∥</mo>\n </mrow>\n <mn>0</mn>\n </msub>\n <mrow>\n <mo>]</mo>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$({\\cal A}[\\Vert .\\Vert],{\\cal A}_0[\\Vert .\\Vert _0])$</annotation>\n </semantics></math> that we call <i>eigenstates of an element</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>∈</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$a\\in {\\cal A}$</annotation>\n </semantics></math>, and we deduce some of their properties. We further apply our definition to a family of ladder elements, that is, elements of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>${\\cal A}$</annotation>\n </semantics></math> obeying certain commutation relations physically motivated, and we discuss several results, including orthogonality and biorthogonality of the forms, via Gelfand–Naimark–Segal (GNS) representation.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"1062-1075"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400291","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400291","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑巴拿赫准 * 代数 ( A [ ∥ . ∥ ] , A 0 [ ∥ . ∥ 0 ] ) $({\cal A}[\Vert .\Vert],{\cal A}_0[\Vert .\Vert _0])$,我们称之为元素 a∈A $a\in {\cal A}$ 的特征状态,并推导出它们的一些性质。我们进一步将我们的定义应用于梯形元素族,即服从某些物理换向关系的 A ${\cal A}$ 元素,并讨论了几个结果,包括通过 Gelfand-Naimark-Segal (GNS) 表示的形式的正交性和双正交性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sesquilinear forms as eigenvectors in quasi *-algebras, with an application to ladder elements

We consider a particular class of sesquilinear forms on a Banach quasi *-algebra ( A [ . ] , A 0 [ . 0 ] ) $({\cal A}[\Vert .\Vert],{\cal A}_0[\Vert .\Vert _0])$ that we call eigenstates of an element a A $a\in {\cal A}$ , and we deduce some of their properties. We further apply our definition to a family of ladder elements, that is, elements of A ${\cal A}$ obeying certain commutation relations physically motivated, and we discuss several results, including orthogonality and biorthogonality of the forms, via Gelfand–Naimark–Segal (GNS) representation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信