Giovanni Calvaruso, Marco Castrillón-Lopez, Lorenzo Pellegrino
{"title":"On totally umbilical and minimal surfaces of the Lorentzian Heisenberg groups","authors":"Giovanni Calvaruso, Marco Castrillón-Lopez, Lorenzo Pellegrino","doi":"10.1002/mana.12020","DOIUrl":null,"url":null,"abstract":"<p>This paper has manifold purposes. We first introduce a description of the Gauss map for submanifolds (both spacelike and timelike) of a Lorentzian ambient space and relate the conformality of the Gauss map of a surface to total umbilicity and minimality. We then focus on surfaces of the three-dimensional Heisenberg group, equipped with any of its left-invariant Lorentzian metrics. We prove that with the obvious exception of the flat case, no totally umbilical surfaces occur. On the other hand, we determine and explicitly describe several examples of minimal and constant mean curvature (CMC) surfaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1922-1942"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper has manifold purposes. We first introduce a description of the Gauss map for submanifolds (both spacelike and timelike) of a Lorentzian ambient space and relate the conformality of the Gauss map of a surface to total umbilicity and minimality. We then focus on surfaces of the three-dimensional Heisenberg group, equipped with any of its left-invariant Lorentzian metrics. We prove that with the obvious exception of the flat case, no totally umbilical surfaces occur. On the other hand, we determine and explicitly describe several examples of minimal and constant mean curvature (CMC) surfaces.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index