海森堡群域上的Carleson测度

IF 0.8 3区 数学 Q2 MATHEMATICS
Tomasz Adamowicz, Marcin Gryszówka
{"title":"海森堡群域上的Carleson测度","authors":"Tomasz Adamowicz,&nbsp;Marcin Gryszówka","doi":"10.1002/mana.12038","DOIUrl":null,"url":null,"abstract":"<p>We study the Carleson measures on nontangentially accessible (NTA) and admissible for the Dirichlet problem (ADP) domains in the Heisenberg groups <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math> and provide two characterizations of such measures: (1) in terms of the level sets of subelliptic harmonic functions and (2) via the 1-quasiconformal family of mappings on the Korányi–Reimann unit ball. Moreover, we establish the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math>-bounds for the square function <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>α</mi>\n </msub>\n <annotation>$S_{\\alpha }$</annotation>\n </semantics></math> of a subelliptic harmonic function and the Carleson measure estimates for the BMO boundary data, both on NTA domains in <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>. Finally, we prove a Fatou-type theorem on <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>ε</mi>\n <mo>,</mo>\n <mi>δ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\varepsilon, \\delta)$</annotation>\n </semantics></math>-domains in <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>. Our work generalizes results by Capogna–Garofalo and Jerison–Kenig.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 7","pages":"2424-2452"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carleson measures on domains in Heisenberg groups\",\"authors\":\"Tomasz Adamowicz,&nbsp;Marcin Gryszówka\",\"doi\":\"10.1002/mana.12038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the Carleson measures on nontangentially accessible (NTA) and admissible for the Dirichlet problem (ADP) domains in the Heisenberg groups <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {H}^n$</annotation>\\n </semantics></math> and provide two characterizations of such measures: (1) in terms of the level sets of subelliptic harmonic functions and (2) via the 1-quasiconformal family of mappings on the Korányi–Reimann unit ball. Moreover, we establish the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^2$</annotation>\\n </semantics></math>-bounds for the square function <span></span><math>\\n <semantics>\\n <msub>\\n <mi>S</mi>\\n <mi>α</mi>\\n </msub>\\n <annotation>$S_{\\\\alpha }$</annotation>\\n </semantics></math> of a subelliptic harmonic function and the Carleson measure estimates for the BMO boundary data, both on NTA domains in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {H}^n$</annotation>\\n </semantics></math>. Finally, we prove a Fatou-type theorem on <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>ε</mi>\\n <mo>,</mo>\\n <mi>δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\varepsilon, \\\\delta)$</annotation>\\n </semantics></math>-domains in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {H}^n$</annotation>\\n </semantics></math>. Our work generalizes results by Capogna–Garofalo and Jerison–Kenig.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 7\",\"pages\":\"2424-2452\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12038\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12038","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Heisenberg群H n $\mathbb {H}^n$中Dirichlet问题(ADP)域上的非切可及(NTA)和可容许(ADP)域上的Carleson测度,并给出了这些测度的两个表征:(1)亚椭圆调和函数的水平集,(2)通过Korányi-Reimann单位球上的1-拟共形映射族。此外,我们建立了次椭圆调和函数的平方函数S α $S_{\alpha }$的l2 $L^2$ -界和BMO边界数据的Carleson测度估计。都在H的NTA域$\mathbb {H}^n$。最后,我们证明了H n $\mathbb {H}^n$中(ε, δ) $(\varepsilon, \delta)$ -域上的一个fatou型定理。我们的工作推广了Capogna-Garofalo和Jerison-Kenig的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carleson measures on domains in Heisenberg groups

We study the Carleson measures on nontangentially accessible (NTA) and admissible for the Dirichlet problem (ADP) domains in the Heisenberg groups H n $\mathbb {H}^n$ and provide two characterizations of such measures: (1) in terms of the level sets of subelliptic harmonic functions and (2) via the 1-quasiconformal family of mappings on the Korányi–Reimann unit ball. Moreover, we establish the L 2 $L^2$ -bounds for the square function S α $S_{\alpha }$ of a subelliptic harmonic function and the Carleson measure estimates for the BMO boundary data, both on NTA domains in H n $\mathbb {H}^n$ . Finally, we prove a Fatou-type theorem on ( ε , δ ) $(\varepsilon, \delta)$ -domains in H n $\mathbb {H}^n$ . Our work generalizes results by Capogna–Garofalo and Jerison–Kenig.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信