Uniform stability of the inverse problem for the non-self-adjoint Sturm–Liouville operator

IF 0.8 3区 数学 Q2 MATHEMATICS
Natalia P. Bondarenko
{"title":"Uniform stability of the inverse problem for the non-self-adjoint Sturm–Liouville operator","authors":"Natalia P. Bondarenko","doi":"10.1002/mana.70018","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we develop a new approach to investigation of the uniform stability for inverse spectral problems. We consider the non-self-adjoint Sturm–Liouville problem that consists in the recovery of the potential and the parameters of the boundary conditions from the eigenvalues and the generalized weight numbers. The special case of simple eigenvalues, as well as the general case with multiple eigenvalues, is studied. We find various subsets in the space of spectral data, on which the inverse mapping is Lipschitz continuous, and obtain the corresponding unconditional uniform stability estimates. Furthermore, the conditional uniform stability of the inverse problem under a priori restrictions on the potential is studied. In addition, we prove the uniform stability of the inverse problem by the Cauchy data, which are convenient for numerical reconstruction of the potential and for applications to partial inverse problems.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2814-2844"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70018","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a new approach to investigation of the uniform stability for inverse spectral problems. We consider the non-self-adjoint Sturm–Liouville problem that consists in the recovery of the potential and the parameters of the boundary conditions from the eigenvalues and the generalized weight numbers. The special case of simple eigenvalues, as well as the general case with multiple eigenvalues, is studied. We find various subsets in the space of spectral data, on which the inverse mapping is Lipschitz continuous, and obtain the corresponding unconditional uniform stability estimates. Furthermore, the conditional uniform stability of the inverse problem under a priori restrictions on the potential is studied. In addition, we prove the uniform stability of the inverse problem by the Cauchy data, which are convenient for numerical reconstruction of the potential and for applications to partial inverse problems.

非自伴随Sturm-Liouville算子逆问题的一致稳定性
本文提出了一种研究反谱问题一致稳定性的新方法。我们考虑了从特征值和广义权数中恢复边界条件的势和参数的非自伴随Sturm-Liouville问题。研究了简单特征值的特殊情况和多特征值的一般情况。我们在谱数据空间中找到了逆映射为Lipschitz连续的各种子集,并得到了相应的无条件一致稳定性估计。在此基础上,研究了逆问题在势的先验限制下的条件一致稳定性。此外,我们还利用柯西数据证明了逆问题的一致稳定性,这为势的数值重建和部分逆问题的应用提供了方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信