求助PDF
{"title":"均匀(d+1)-束在正特征的格拉斯曼G(d,n)上","authors":"Rong Du, Yuhang Zhou","doi":"10.1002/mana.70022","DOIUrl":null,"url":null,"abstract":"<p>This paper is dedicated to the classification of uniform vector bundles of rank <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d+1$</annotation>\n </semantics></math> over the Grassmannian <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G(d,n)$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>≤</mo>\n <mi>d</mi>\n <mo>≤</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$2\\le d\\le n-d$</annotation>\n </semantics></math>) over an algebraically closed field in positive characteristics. Specifically, we show that all uniform vector bundles with rank <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d+1$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G(d,n)$</annotation>\n </semantics></math> are homogeneous.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2867-2887"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform (d+1)-bundle over the Grassmannian G(d,n) in positive characteristics\",\"authors\":\"Rong Du, Yuhang Zhou\",\"doi\":\"10.1002/mana.70022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is dedicated to the classification of uniform vector bundles of rank <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$d+1$</annotation>\\n </semantics></math> over the Grassmannian <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$G(d,n)$</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>≤</mo>\\n <mi>d</mi>\\n <mo>≤</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$2\\\\le d\\\\le n-d$</annotation>\\n </semantics></math>) over an algebraically closed field in positive characteristics. Specifically, we show that all uniform vector bundles with rank <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$d+1$</annotation>\\n </semantics></math> over <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mo>(</mo>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$G(d,n)$</annotation>\\n </semantics></math> are homogeneous.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2867-2887\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70022\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70022","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用