宇宙无毛猜想与共形矢量场

IF 0.8 3区 数学 Q2 MATHEMATICS
Seungsu Hwang, Gabjin Yun
{"title":"宇宙无毛猜想与共形矢量场","authors":"Seungsu Hwang,&nbsp;Gabjin Yun","doi":"10.1002/mana.70025","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate cosmic no-hair properties mathematically when a given Riemannian manifold admits a nontrivial closed conformal vector field. Let <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^n, g)$</annotation>\n </semantics></math> be a compact Riemannian <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-manifold with connected non-empty boundary <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>M</mi>\n </mrow>\n <annotation>$\\partial M$</annotation>\n </semantics></math>. Assume that there exists a smooth function <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$f&gt;0$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>∖</mo>\n <mi>∂</mi>\n <mi>M</mi>\n </mrow>\n <annotation>$M \\setminus \\partial M$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>M</mi>\n <mo>=</mo>\n <msup>\n <mi>f</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\partial M = f^{-1}(0)$</annotation>\n </semantics></math> satisfying the static vacuum equation. We prove that if <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^n, g)$</annotation>\n </semantics></math> admits a nontrivial closed conformal vector field, then <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> must be isometric to a hemisphere <span></span><math>\n <semantics>\n <msubsup>\n <mi>S</mi>\n <mo>+</mo>\n <mi>n</mi>\n </msubsup>\n <annotation>${\\mathbb {S}}_+^n$</annotation>\n </semantics></math>. We also discuss a static triple <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mi>f</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^n, g, f)$</annotation>\n </semantics></math> admitting a nontrivial conformal vector field which is not necessarily closed.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3061-3074"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cosmic no-hair conjecture and conformal vector fields\",\"authors\":\"Seungsu Hwang,&nbsp;Gabjin Yun\",\"doi\":\"10.1002/mana.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate cosmic no-hair properties mathematically when a given Riemannian manifold admits a nontrivial closed conformal vector field. Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>M</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>g</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(M^n, g)$</annotation>\\n </semantics></math> be a compact Riemannian <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-manifold with connected non-empty boundary <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$\\\\partial M$</annotation>\\n </semantics></math>. Assume that there exists a smooth function <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$f&gt;0$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mo>∖</mo>\\n <mi>∂</mi>\\n <mi>M</mi>\\n </mrow>\\n <annotation>$M \\\\setminus \\\\partial M$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>M</mi>\\n <mo>=</mo>\\n <msup>\\n <mi>f</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\partial M = f^{-1}(0)$</annotation>\\n </semantics></math> satisfying the static vacuum equation. We prove that if <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>M</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>g</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(M^n, g)$</annotation>\\n </semantics></math> admits a nontrivial closed conformal vector field, then <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> must be isometric to a hemisphere <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>S</mi>\\n <mo>+</mo>\\n <mi>n</mi>\\n </msubsup>\\n <annotation>${\\\\mathbb {S}}_+^n$</annotation>\\n </semantics></math>. We also discuss a static triple <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>M</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>f</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(M^n, g, f)$</annotation>\\n </semantics></math> admitting a nontrivial conformal vector field which is not necessarily closed.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 9\",\"pages\":\"3061-3074\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70025\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70025","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文从数学上研究了给定黎曼流形存在非平凡闭共形向量场时的宇宙无毛性质。设(mn, g)$ (M^n, g)$是一个紧黎曼n$ -流形,它具有连通的非空边界∂M$ \偏M$。假设在M$ M$上存在一个平滑函数f$ f$, f>0$ f>0$在M∈∂M$ M \setminus \partial M$中,并且∂M = f−1 (0)$ \partial M = f^{-1}(0)$满足静态真空方程。我们证明了如果(mn, g)$ (M^n, g)$存在一个非平凡闭共形向量场,那么M$ M$一定是等距于半球S + n$ {\mathbb {S}}_+^n$。我们还讨论了一个静态三元组(mn, g, f)$ (M^n, g, f)$,它允许一个不一定闭合的非平凡共形向量场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cosmic no-hair conjecture and conformal vector fields

In this paper, we investigate cosmic no-hair properties mathematically when a given Riemannian manifold admits a nontrivial closed conformal vector field. Let ( M n , g ) $(M^n, g)$ be a compact Riemannian n $n$ -manifold with connected non-empty boundary M $\partial M$ . Assume that there exists a smooth function f $f$ on M $M$ with f > 0 $f>0$ in M M $M \setminus \partial M$ and M = f 1 ( 0 ) $\partial M = f^{-1}(0)$ satisfying the static vacuum equation. We prove that if ( M n , g ) $(M^n, g)$ admits a nontrivial closed conformal vector field, then M $M$ must be isometric to a hemisphere S + n ${\mathbb {S}}_+^n$ . We also discuss a static triple ( M n , g , f ) $(M^n, g, f)$ admitting a nontrivial conformal vector field which is not necessarily closed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信