s2 × s2 $\mathbb {S}^2\乘以\mathbb {S}^2$和h2 × h2 $\mathbb {H}^2\乘以\mathbb {H}^2$的实超曲面用并行算子

IF 0.8 3区 数学 Q2 MATHEMATICS
Zejun Hu, Xiaoge Lu
{"title":"s2 × s2 $\\mathbb {S}^2\\乘以\\mathbb {S}^2$和h2 × h2 $\\mathbb {H}^2\\乘以\\mathbb {H}^2$的实超曲面用并行算子","authors":"Zejun Hu,&nbsp;Xiaoge Lu","doi":"10.1002/mana.70024","DOIUrl":null,"url":null,"abstract":"<p>On real hypersurafces of the Kähler surface <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {S}^2\\times \\mathbb {S}^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {H}^2\\times \\mathbb {H}^2$</annotation>\n </semantics></math>, there are three typical operators: the shape operator, the structure Lie operator, and the contact Lie operator. In this paper, we study real hypersurfaces in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {S}^2\\times \\mathbb {S}^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {H}^2\\times \\mathbb {H}^2$</annotation>\n </semantics></math> related to these operators. As the main results, we classify real hypersurfaces of both <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {S}^2\\times \\mathbb {S}^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {H}^2\\times \\mathbb {H}^2$</annotation>\n </semantics></math> for which one of the preceding three operators is either parallel or <span></span><math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>-parallel.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2888-2900"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real hypersurfaces of \\n \\n \\n \\n S\\n 2\\n \\n ×\\n \\n S\\n 2\\n \\n \\n $\\\\mathbb {S}^2\\\\times \\\\mathbb {S}^2$\\n and \\n \\n \\n \\n H\\n 2\\n \\n ×\\n \\n H\\n 2\\n \\n \\n $\\\\mathbb {H}^2\\\\times \\\\mathbb {H}^2$\\n with parallel operators\",\"authors\":\"Zejun Hu,&nbsp;Xiaoge Lu\",\"doi\":\"10.1002/mana.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On real hypersurafces of the Kähler surface <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {S}^2\\\\times \\\\mathbb {S}^2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {H}^2\\\\times \\\\mathbb {H}^2$</annotation>\\n </semantics></math>, there are three typical operators: the shape operator, the structure Lie operator, and the contact Lie operator. In this paper, we study real hypersurfaces in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {S}^2\\\\times \\\\mathbb {S}^2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {H}^2\\\\times \\\\mathbb {H}^2$</annotation>\\n </semantics></math> related to these operators. As the main results, we classify real hypersurfaces of both <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {S}^2\\\\times \\\\mathbb {S}^2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {H}^2\\\\times \\\\mathbb {H}^2$</annotation>\\n </semantics></math> for which one of the preceding three operators is either parallel or <span></span><math>\\n <semantics>\\n <mi>η</mi>\\n <annotation>$\\\\eta$</annotation>\\n </semantics></math>-parallel.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2888-2900\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70024\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Kähler曲面s2 × s2 $\mathbb {S}^2\乘以mathbb {S}^2$和h2 × H的实超曲面上2$ \mathbb {H}^2\乘以\mathbb {H}^2$,有三种典型的算子:形状算子、结构李算子和接触李算子。在本文中,我们研究了s2 × s2 $\mathbb {S}^2\乘以\mathbb {S}^2$和h2 × H中的实超曲面与这些运算符相关的2$ \mathbb {H}^2\乘以\mathbb {H}^2$。作为主要结果,我们对s2 × s2 $\mathbb {S}^2\乘以mathbb {S}^2$和h2 × H的实超曲面进行了分类2$ \mathbb {H}^2\乘以\mathbb {H}^2$,其中前面三个运算符中的一个是并行的或η $\eta$ -并行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real hypersurfaces of S 2 × S 2 $\mathbb {S}^2\times \mathbb {S}^2$ and H 2 × H 2 $\mathbb {H}^2\times \mathbb {H}^2$ with parallel operators

On real hypersurafces of the Kähler surface S 2 × S 2 $\mathbb {S}^2\times \mathbb {S}^2$ and H 2 × H 2 $\mathbb {H}^2\times \mathbb {H}^2$ , there are three typical operators: the shape operator, the structure Lie operator, and the contact Lie operator. In this paper, we study real hypersurfaces in S 2 × S 2 $\mathbb {S}^2\times \mathbb {S}^2$ and H 2 × H 2 $\mathbb {H}^2\times \mathbb {H}^2$ related to these operators. As the main results, we classify real hypersurfaces of both S 2 × S 2 $\mathbb {S}^2\times \mathbb {S}^2$ and H 2 × H 2 $\mathbb {H}^2\times \mathbb {H}^2$ for which one of the preceding three operators is either parallel or η $\eta$ -parallel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信