求助PDF
{"title":"s2 × s2 $\\mathbb {S}^2\\乘以\\mathbb {S}^2$和h2 × h2 $\\mathbb {H}^2\\乘以\\mathbb {H}^2$的实超曲面用并行算子","authors":"Zejun Hu, Xiaoge Lu","doi":"10.1002/mana.70024","DOIUrl":null,"url":null,"abstract":"<p>On real hypersurafces of the Kähler surface <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {S}^2\\times \\mathbb {S}^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {H}^2\\times \\mathbb {H}^2$</annotation>\n </semantics></math>, there are three typical operators: the shape operator, the structure Lie operator, and the contact Lie operator. In this paper, we study real hypersurfaces in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {S}^2\\times \\mathbb {S}^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {H}^2\\times \\mathbb {H}^2$</annotation>\n </semantics></math> related to these operators. As the main results, we classify real hypersurfaces of both <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {S}^2\\times \\mathbb {S}^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {H}^2\\times \\mathbb {H}^2$</annotation>\n </semantics></math> for which one of the preceding three operators is either parallel or <span></span><math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>-parallel.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2888-2900"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real hypersurfaces of \\n \\n \\n \\n S\\n 2\\n \\n ×\\n \\n S\\n 2\\n \\n \\n $\\\\mathbb {S}^2\\\\times \\\\mathbb {S}^2$\\n and \\n \\n \\n \\n H\\n 2\\n \\n ×\\n \\n H\\n 2\\n \\n \\n $\\\\mathbb {H}^2\\\\times \\\\mathbb {H}^2$\\n with parallel operators\",\"authors\":\"Zejun Hu, Xiaoge Lu\",\"doi\":\"10.1002/mana.70024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On real hypersurafces of the Kähler surface <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {S}^2\\\\times \\\\mathbb {S}^2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {H}^2\\\\times \\\\mathbb {H}^2$</annotation>\\n </semantics></math>, there are three typical operators: the shape operator, the structure Lie operator, and the contact Lie operator. In this paper, we study real hypersurfaces in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {S}^2\\\\times \\\\mathbb {S}^2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {H}^2\\\\times \\\\mathbb {H}^2$</annotation>\\n </semantics></math> related to these operators. As the main results, we classify real hypersurfaces of both <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>S</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {S}^2\\\\times \\\\mathbb {S}^2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>×</mo>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {H}^2\\\\times \\\\mathbb {H}^2$</annotation>\\n </semantics></math> for which one of the preceding three operators is either parallel or <span></span><math>\\n <semantics>\\n <mi>η</mi>\\n <annotation>$\\\\eta$</annotation>\\n </semantics></math>-parallel.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2888-2900\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70024\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用