{"title":"Uniform (d+1)-bundle over the Grassmannian G(d,n) in positive characteristics","authors":"Rong Du, Yuhang Zhou","doi":"10.1002/mana.70022","DOIUrl":null,"url":null,"abstract":"<p>This paper is dedicated to the classification of uniform vector bundles of rank <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d+1$</annotation>\n </semantics></math> over the Grassmannian <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G(d,n)$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>≤</mo>\n <mi>d</mi>\n <mo>≤</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$2\\le d\\le n-d$</annotation>\n </semantics></math>) over an algebraically closed field in positive characteristics. Specifically, we show that all uniform vector bundles with rank <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d+1$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$G(d,n)$</annotation>\n </semantics></math> are homogeneous.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2867-2887"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70022","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is dedicated to the classification of uniform vector bundles of rank over the Grassmannian () over an algebraically closed field in positive characteristics. Specifically, we show that all uniform vector bundles with rank over are homogeneous.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index