Asymptotic analysis of the Navier–Stokes equations in a thin domain with power-law slip boundary conditions

IF 0.8 3区 数学 Q2 MATHEMATICS
María Anguiano, Francisco J. Suárez-Grau
{"title":"Asymptotic analysis of the Navier–Stokes equations in a thin domain with power-law slip boundary conditions","authors":"María Anguiano,&nbsp;Francisco J. Suárez-Grau","doi":"10.1002/mana.70011","DOIUrl":null,"url":null,"abstract":"<p>This theoretical study deals with the Navier–Stokes equations posed in a 3D thin domain with thickness <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>&lt;</mo>\n <mi>ε</mi>\n <mo>≪</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0&lt;\\varepsilon \\ll 1$</annotation>\n </semantics></math>, assuming power-law slip boundary conditions, with an anisotropic tensor, on the bottom. This condition, introduced in (Djoko et al. <i>Comput. Math. Appl</i>. <b>128</b> (2022) 198–213), represents a generalization of the Navier slip boundary condition. The goal is to study the influence of the power-law slip boundary conditions with an anisotropic tensor of order <span></span><math>\n <semantics>\n <msup>\n <mi>ε</mi>\n <mfrac>\n <mi>γ</mi>\n <mi>s</mi>\n </mfrac>\n </msup>\n <annotation>$\\varepsilon ^{\\gamma \\over s}$</annotation>\n </semantics></math>, with <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\gamma \\in \\mathbb {R}$</annotation>\n </semantics></math> and flow index <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>&lt;</mo>\n <mi>s</mi>\n <mo>&lt;</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$1&lt;s&lt;2$</annotation>\n </semantics></math>, on the behavior of the fluid with thickness <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math> by using asymptotic analysis when <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow 0$</annotation>\n </semantics></math>, depending on the values of <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math>. As a result, we deduce the existence of a critical value of <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> given by <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>γ</mi>\n <mi>s</mi>\n <mo>∗</mo>\n </msubsup>\n <mo>=</mo>\n <mn>3</mn>\n <mo>−</mo>\n <mn>2</mn>\n <mi>s</mi>\n </mrow>\n <annotation>$\\gamma _s^*=3-2s$</annotation>\n </semantics></math> and so, three different limit boundary conditions are derived. The critical case <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>=</mo>\n <msubsup>\n <mi>γ</mi>\n <mi>s</mi>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation>$\\gamma =\\gamma _s^*$</annotation>\n </semantics></math> corresponds to a limit condition of type power-law slip. The supercritical case <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>&gt;</mo>\n <msubsup>\n <mi>γ</mi>\n <mi>s</mi>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation>$\\gamma &gt;\\gamma _s^*$</annotation>\n </semantics></math> corresponds to a limit boundary condition of type perfect slip. The subcritical case <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>&lt;</mo>\n <msubsup>\n <mi>γ</mi>\n <mi>s</mi>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation>$\\gamma &lt;\\gamma _s^*$</annotation>\n </semantics></math> corresponds to a limit boundary condition of type no-slip.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2691-2711"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This theoretical study deals with the Navier–Stokes equations posed in a 3D thin domain with thickness 0 < ε 1 $0<\varepsilon \ll 1$ , assuming power-law slip boundary conditions, with an anisotropic tensor, on the bottom. This condition, introduced in (Djoko et al. Comput. Math. Appl. 128 (2022) 198–213), represents a generalization of the Navier slip boundary condition. The goal is to study the influence of the power-law slip boundary conditions with an anisotropic tensor of order ε γ s $\varepsilon ^{\gamma \over s}$ , with γ R $\gamma \in \mathbb {R}$ and flow index 1 < s < 2 $1<s<2$ , on the behavior of the fluid with thickness ε $\varepsilon$ by using asymptotic analysis when ε 0 $\varepsilon \rightarrow 0$ , depending on the values of γ $\gamma$ . As a result, we deduce the existence of a critical value of γ $\gamma$ given by γ s = 3 2 s $\gamma _s^*=3-2s$ and so, three different limit boundary conditions are derived. The critical case γ = γ s $\gamma =\gamma _s^*$ corresponds to a limit condition of type power-law slip. The supercritical case γ > γ s $\gamma >\gamma _s^*$ corresponds to a limit boundary condition of type perfect slip. The subcritical case γ < γ s $\gamma <\gamma _s^*$ corresponds to a limit boundary condition of type no-slip.

具有幂律滑移边界条件的薄域内Navier-Stokes方程的渐近分析
本理论研究处理了厚度为0 &lt的三维薄域内的Navier-Stokes方程;ε≪1 $0<\varepsilon \ll 1$,假设幂律滑动边界条件,底部有各向异性张量。Djoko等人介绍了这种情况。计算。数学。应用程序,128(2022)198-213),代表了Navier滑移边界条件的推广。目的是研究幂律滑移边界条件对ε γ s阶各向异性张量$\varepsilon ^{\gamma \over s}$的影响。设γ∈R $\gamma \in \mathbb {R}$,流动指数1 &lt;S &lt;2 $1<s<2$,当ε→0 $\varepsilon \rightarrow 0$时,利用渐近分析,根据γ $\gamma$的值,对厚度为ε $\varepsilon$的流体的行为进行了分析。由此,我们推导出γ s * = 3−2 s $\gamma _s^*=3-2s$给出的γ $\gamma$的一个临界值的存在性,从而导出了三个不同的极限边界条件。临界情况γ = γ s * $\gamma =\gamma _s^*$对应于幂律滑移型的极限条件。超临界情况γ &gt;γ s * $\gamma >\gamma _s^*$对应于完全滑移型的极限边界条件。亚临界情况γ &lt;γ s∗$\gamma <\gamma _s^*$对应于无滑移型的极限边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信