{"title":"Asymptotic analysis of the Navier–Stokes equations in a thin domain with power-law slip boundary conditions","authors":"María Anguiano, Francisco J. Suárez-Grau","doi":"10.1002/mana.70011","DOIUrl":null,"url":null,"abstract":"<p>This theoretical study deals with the Navier–Stokes equations posed in a 3D thin domain with thickness <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo><</mo>\n <mi>ε</mi>\n <mo>≪</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0<\\varepsilon \\ll 1$</annotation>\n </semantics></math>, assuming power-law slip boundary conditions, with an anisotropic tensor, on the bottom. This condition, introduced in (Djoko et al. <i>Comput. Math. Appl</i>. <b>128</b> (2022) 198–213), represents a generalization of the Navier slip boundary condition. The goal is to study the influence of the power-law slip boundary conditions with an anisotropic tensor of order <span></span><math>\n <semantics>\n <msup>\n <mi>ε</mi>\n <mfrac>\n <mi>γ</mi>\n <mi>s</mi>\n </mfrac>\n </msup>\n <annotation>$\\varepsilon ^{\\gamma \\over s}$</annotation>\n </semantics></math>, with <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>∈</mo>\n <mi>R</mi>\n </mrow>\n <annotation>$\\gamma \\in \\mathbb {R}$</annotation>\n </semantics></math> and flow index <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo><</mo>\n <mi>s</mi>\n <mo><</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$1<s<2$</annotation>\n </semantics></math>, on the behavior of the fluid with thickness <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math> by using asymptotic analysis when <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow 0$</annotation>\n </semantics></math>, depending on the values of <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math>. As a result, we deduce the existence of a critical value of <span></span><math>\n <semantics>\n <mi>γ</mi>\n <annotation>$\\gamma$</annotation>\n </semantics></math> given by <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>γ</mi>\n <mi>s</mi>\n <mo>∗</mo>\n </msubsup>\n <mo>=</mo>\n <mn>3</mn>\n <mo>−</mo>\n <mn>2</mn>\n <mi>s</mi>\n </mrow>\n <annotation>$\\gamma _s^*=3-2s$</annotation>\n </semantics></math> and so, three different limit boundary conditions are derived. The critical case <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>=</mo>\n <msubsup>\n <mi>γ</mi>\n <mi>s</mi>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation>$\\gamma =\\gamma _s^*$</annotation>\n </semantics></math> corresponds to a limit condition of type power-law slip. The supercritical case <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>></mo>\n <msubsup>\n <mi>γ</mi>\n <mi>s</mi>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation>$\\gamma >\\gamma _s^*$</annotation>\n </semantics></math> corresponds to a limit boundary condition of type perfect slip. The subcritical case <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo><</mo>\n <msubsup>\n <mi>γ</mi>\n <mi>s</mi>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation>$\\gamma <\\gamma _s^*$</annotation>\n </semantics></math> corresponds to a limit boundary condition of type no-slip.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2691-2711"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This theoretical study deals with the Navier–Stokes equations posed in a 3D thin domain with thickness , assuming power-law slip boundary conditions, with an anisotropic tensor, on the bottom. This condition, introduced in (Djoko et al. Comput. Math. Appl. 128 (2022) 198–213), represents a generalization of the Navier slip boundary condition. The goal is to study the influence of the power-law slip boundary conditions with an anisotropic tensor of order , with and flow index , on the behavior of the fluid with thickness by using asymptotic analysis when , depending on the values of . As a result, we deduce the existence of a critical value of given by and so, three different limit boundary conditions are derived. The critical case corresponds to a limit condition of type power-law slip. The supercritical case corresponds to a limit boundary condition of type perfect slip. The subcritical case corresponds to a limit boundary condition of type no-slip.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index