关于fraser - sargent型极小曲面的指数

IF 0.8 3区 数学 Q2 MATHEMATICS
Vladimir Medvedev, Egor Morozov
{"title":"关于fraser - sargent型极小曲面的指数","authors":"Vladimir Medvedev,&nbsp;Egor Morozov","doi":"10.1002/mana.12035","DOIUrl":null,"url":null,"abstract":"<p>Fraser–Sargent surfaces are free boundary minimal surfaces in the four-dimensional unit Euclidean ball. Extended infinitely they define immersed minimal surfaces in the Euclidean space. The parts of these surfaces outside the ball are exterior-free boundary minimal surfaces. We prove that they are stable. Independently of it, we find an upper bound on the index of Fraser–Sargent surfaces inside the ball. Also, we provide computational experiments and state a conjecture about an improved index lower bound of the orientable cover of Fraser–Sargent surfaces inside the ball. Finally, based on a similar computational experiment for infinitely extended Fraser–Sargent surfaces, we state a conjecture about their index.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3007-3026"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the index of Fraser–Sargent-type minimal surfaces\",\"authors\":\"Vladimir Medvedev,&nbsp;Egor Morozov\",\"doi\":\"10.1002/mana.12035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fraser–Sargent surfaces are free boundary minimal surfaces in the four-dimensional unit Euclidean ball. Extended infinitely they define immersed minimal surfaces in the Euclidean space. The parts of these surfaces outside the ball are exterior-free boundary minimal surfaces. We prove that they are stable. Independently of it, we find an upper bound on the index of Fraser–Sargent surfaces inside the ball. Also, we provide computational experiments and state a conjecture about an improved index lower bound of the orientable cover of Fraser–Sargent surfaces inside the ball. Finally, based on a similar computational experiment for infinitely extended Fraser–Sargent surfaces, we state a conjecture about their index.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 9\",\"pages\":\"3007-3026\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12035\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12035","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

弗雷泽-萨金特曲面是四维单位欧几里得球中的自由边界极小曲面。无限扩展,它们定义了欧几里得空间中的浸入最小曲面。这些表面在球外的部分是无外边界最小表面。我们证明它们是稳定的。独立于它,我们找到了球内弗雷泽-萨金特曲面指数的上界。此外,我们还提供了计算实验,并提出了一个关于球内弗雷泽-萨金特曲面可定向覆盖的改进指数下界的猜想。最后,基于一个类似的无限扩展弗雷泽-萨金特曲面的计算实验,我们提出了一个关于无限扩展弗雷泽-萨金特曲面索引的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the index of Fraser–Sargent-type minimal surfaces

Fraser–Sargent surfaces are free boundary minimal surfaces in the four-dimensional unit Euclidean ball. Extended infinitely they define immersed minimal surfaces in the Euclidean space. The parts of these surfaces outside the ball are exterior-free boundary minimal surfaces. We prove that they are stable. Independently of it, we find an upper bound on the index of Fraser–Sargent surfaces inside the ball. Also, we provide computational experiments and state a conjecture about an improved index lower bound of the orientable cover of Fraser–Sargent surfaces inside the ball. Finally, based on a similar computational experiment for infinitely extended Fraser–Sargent surfaces, we state a conjecture about their index.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信