Jussi Behrndt, Markus Holzmann, Christian Stelzer-Landauer
{"title":"范数解析意义上δ ${\\delta}$壳势的Dirac算子逼近。一、定性结果","authors":"Jussi Behrndt, Markus Holzmann, Christian Stelzer-Landauer","doi":"10.1002/mana.70004","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the approximation of Dirac operators with general <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math>-shell potentials supported on <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <annotation>$C^2$</annotation>\n </semantics></math>-curves in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <annotation>$C^2$</annotation>\n </semantics></math>-surfaces in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <annotation>$\\mathbb {R}^3$</annotation>\n </semantics></math>, which may be bounded or unbounded, is studied. It is shown under suitable conditions on the weight of the <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math>-interaction that a family of Dirac operators with regular, squeezed potentials converges in the norm resolvent sense to the Dirac operator with the <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math>-shell interaction.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2499-2546"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70004","citationCount":"0","resultStr":"{\"title\":\"Approximation of Dirac operators with \\n \\n δ\\n ${\\\\delta }$\\n -shell potentials in the norm resolvent sense. I. Qualitative results\",\"authors\":\"Jussi Behrndt, Markus Holzmann, Christian Stelzer-Landauer\",\"doi\":\"10.1002/mana.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the approximation of Dirac operators with general <span></span><math>\\n <semantics>\\n <mi>δ</mi>\\n <annotation>$\\\\delta$</annotation>\\n </semantics></math>-shell potentials supported on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$C^2$</annotation>\\n </semantics></math>-curves in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^2$</annotation>\\n </semantics></math> or <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$C^2$</annotation>\\n </semantics></math>-surfaces in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^3$</annotation>\\n </semantics></math>, which may be bounded or unbounded, is studied. It is shown under suitable conditions on the weight of the <span></span><math>\\n <semantics>\\n <mi>δ</mi>\\n <annotation>$\\\\delta$</annotation>\\n </semantics></math>-interaction that a family of Dirac operators with regular, squeezed potentials converges in the norm resolvent sense to the Dirac operator with the <span></span><math>\\n <semantics>\\n <mi>δ</mi>\\n <annotation>$\\\\delta$</annotation>\\n </semantics></math>-shell interaction.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2499-2546\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70004\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70004","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Approximation of Dirac operators with
δ
${\delta }$
-shell potentials in the norm resolvent sense. I. Qualitative results
In this paper, the approximation of Dirac operators with general -shell potentials supported on -curves in or -surfaces in , which may be bounded or unbounded, is studied. It is shown under suitable conditions on the weight of the -interaction that a family of Dirac operators with regular, squeezed potentials converges in the norm resolvent sense to the Dirac operator with the -shell interaction.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index