{"title":"Real hypersurfaces of \n \n \n \n S\n 2\n \n ×\n \n S\n 2\n \n \n $\\mathbb {S}^2\\times \\mathbb {S}^2$\n and \n \n \n \n H\n 2\n \n ×\n \n H\n 2\n \n \n $\\mathbb {H}^2\\times \\mathbb {H}^2$\n with parallel operators","authors":"Zejun Hu, Xiaoge Lu","doi":"10.1002/mana.70024","DOIUrl":null,"url":null,"abstract":"<p>On real hypersurafces of the Kähler surface <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {S}^2\\times \\mathbb {S}^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {H}^2\\times \\mathbb {H}^2$</annotation>\n </semantics></math>, there are three typical operators: the shape operator, the structure Lie operator, and the contact Lie operator. In this paper, we study real hypersurfaces in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {S}^2\\times \\mathbb {S}^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {H}^2\\times \\mathbb {H}^2$</annotation>\n </semantics></math> related to these operators. As the main results, we classify real hypersurfaces of both <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>S</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {S}^2\\times \\mathbb {S}^2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n <mo>×</mo>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {H}^2\\times \\mathbb {H}^2$</annotation>\n </semantics></math> for which one of the preceding three operators is either parallel or <span></span><math>\n <semantics>\n <mi>η</mi>\n <annotation>$\\eta$</annotation>\n </semantics></math>-parallel.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2888-2900"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
On real hypersurafces of the Kähler surface and , there are three typical operators: the shape operator, the structure Lie operator, and the contact Lie operator. In this paper, we study real hypersurfaces in and related to these operators. As the main results, we classify real hypersurfaces of both and for which one of the preceding three operators is either parallel or -parallel.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index