{"title":"On rank 3 quadratic equations of Veronese embeddings","authors":"Euisung Park, Saerom Sim","doi":"10.1002/mana.70028","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the geometric structure of the locus <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Φ</mi>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Phi _3 (X)$</annotation>\n </semantics></math> of rank 3 quadratic equations of the Veronese variety <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>=</mo>\n <msub>\n <mi>ν</mi>\n <mi>d</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>P</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$X = \\nu _d ({\\mathbb {P}}^n)$</annotation>\n </semantics></math>. Specifically, we investigate the minimal irreducible decomposition of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Φ</mi>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Phi _3 (X)$</annotation>\n </semantics></math> of rank 3 quadratic equations and analyze the geometric properties of the irreducible components of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Φ</mi>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Phi _3 (X)$</annotation>\n </semantics></math> such as their desingularizations. Additionally, we explore the non-singularity and singularity of these irreducible components of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Φ</mi>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Phi _3 (X)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3135-3155"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70028","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the geometric structure of the locus of rank 3 quadratic equations of the Veronese variety . Specifically, we investigate the minimal irreducible decomposition of of rank 3 quadratic equations and analyze the geometric properties of the irreducible components of such as their desingularizations. Additionally, we explore the non-singularity and singularity of these irreducible components of .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index