Approximation of Dirac operators with δ ${\delta }$ -shell potentials in the norm resolvent sense. I. Qualitative results

IF 0.8 3区 数学 Q2 MATHEMATICS
Jussi Behrndt, Markus Holzmann, Christian Stelzer-Landauer
{"title":"Approximation of Dirac operators with \n \n δ\n ${\\delta }$\n -shell potentials in the norm resolvent sense. I. Qualitative results","authors":"Jussi Behrndt,&nbsp;Markus Holzmann,&nbsp;Christian Stelzer-Landauer","doi":"10.1002/mana.70004","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the approximation of Dirac operators with general <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math>-shell potentials supported on <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <annotation>$C^2$</annotation>\n </semantics></math>-curves in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math> or <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <annotation>$C^2$</annotation>\n </semantics></math>-surfaces in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <annotation>$\\mathbb {R}^3$</annotation>\n </semantics></math>, which may be bounded or unbounded, is studied. It is shown under suitable conditions on the weight of the <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math>-interaction that a family of Dirac operators with regular, squeezed potentials converges in the norm resolvent sense to the Dirac operator with the <span></span><math>\n <semantics>\n <mi>δ</mi>\n <annotation>$\\delta$</annotation>\n </semantics></math>-shell interaction.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2499-2546"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70004","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the approximation of Dirac operators with general δ $\delta$ -shell potentials supported on C 2 $C^2$ -curves in R 2 $\mathbb {R}^2$ or C 2 $C^2$ -surfaces in R 3 $\mathbb {R}^3$ , which may be bounded or unbounded, is studied. It is shown under suitable conditions on the weight of the δ $\delta$ -interaction that a family of Dirac operators with regular, squeezed potentials converges in the norm resolvent sense to the Dirac operator with the δ $\delta$ -shell interaction.

范数解析意义上δ ${\delta}$壳势的Dirac算子逼近。一、定性结果
在本文中,具有一般δ $\ δ $壳层势的Dirac算子在r2 $\mathbb {R}^2$或c2 $C^2$曲线上的近似研究了r3 $\mathbb {R}^3$中的c2 $C^2$ -曲面,它可以是有界的,也可以是无界的。在δ $\ δ $ -相互作用权值的适当条件下,具有正则压缩势的狄拉克算子族在范数解析意义上收敛于具有δ $\ δ $ -壳相互作用的狄拉克算子族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信