关于Veronese嵌入的3阶二次方程

IF 0.8 3区 数学 Q2 MATHEMATICS
Euisung Park, Saerom Sim
{"title":"关于Veronese嵌入的3阶二次方程","authors":"Euisung Park,&nbsp;Saerom Sim","doi":"10.1002/mana.70028","DOIUrl":null,"url":null,"abstract":"<p>This paper studies the geometric structure of the locus <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Φ</mi>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Phi _3 (X)$</annotation>\n </semantics></math> of rank 3 quadratic equations of the Veronese variety <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>=</mo>\n <msub>\n <mi>ν</mi>\n <mi>d</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>P</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$X = \\nu _d ({\\mathbb {P}}^n)$</annotation>\n </semantics></math>. Specifically, we investigate the minimal irreducible decomposition of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Φ</mi>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Phi _3 (X)$</annotation>\n </semantics></math> of rank 3 quadratic equations and analyze the geometric properties of the irreducible components of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Φ</mi>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Phi _3 (X)$</annotation>\n </semantics></math> such as their desingularizations. Additionally, we explore the non-singularity and singularity of these irreducible components of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Φ</mi>\n <mn>3</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Phi _3 (X)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3135-3155"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On rank 3 quadratic equations of Veronese embeddings\",\"authors\":\"Euisung Park,&nbsp;Saerom Sim\",\"doi\":\"10.1002/mana.70028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper studies the geometric structure of the locus <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Φ</mi>\\n <mn>3</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Phi _3 (X)$</annotation>\\n </semantics></math> of rank 3 quadratic equations of the Veronese variety <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>ν</mi>\\n <mi>d</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>P</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$X = \\\\nu _d ({\\\\mathbb {P}}^n)$</annotation>\\n </semantics></math>. Specifically, we investigate the minimal irreducible decomposition of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Φ</mi>\\n <mn>3</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Phi _3 (X)$</annotation>\\n </semantics></math> of rank 3 quadratic equations and analyze the geometric properties of the irreducible components of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Φ</mi>\\n <mn>3</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Phi _3 (X)$</annotation>\\n </semantics></math> such as their desingularizations. Additionally, we explore the non-singularity and singularity of these irreducible components of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Φ</mi>\\n <mn>3</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\Phi _3 (X)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 9\",\"pages\":\"3135-3155\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70028\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70028","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Veronese变量X = ν的3阶二次方程的轨迹Φ 3 (X) $\Phi _3 (X)$的几何结构d (pn) $X = \nu _d ({\mathbb {P}}^n)$。具体来说,研究了3阶二次方程Φ 3 (X) $\Phi _3 (X)$的最小不可约分解,并分析了Φ不可约分量的几何性质3 (X) $\Phi _3 (X)$例如它们的去具体化。此外,我们还探讨了Φ 3 (X) $\Phi _3 (X)$的这些不可约分量的非奇异性和奇异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On rank 3 quadratic equations of Veronese embeddings

This paper studies the geometric structure of the locus Φ 3 ( X ) $\Phi _3 (X)$ of rank 3 quadratic equations of the Veronese variety X = ν d ( P n ) $X = \nu _d ({\mathbb {P}}^n)$ . Specifically, we investigate the minimal irreducible decomposition of Φ 3 ( X ) $\Phi _3 (X)$ of rank 3 quadratic equations and analyze the geometric properties of the irreducible components of Φ 3 ( X ) $\Phi _3 (X)$ such as their desingularizations. Additionally, we explore the non-singularity and singularity of these irreducible components of Φ 3 ( X ) $\Phi _3 (X)$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信