{"title":"Cosmic no-hair conjecture and conformal vector fields","authors":"Seungsu Hwang, Gabjin Yun","doi":"10.1002/mana.70025","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate cosmic no-hair properties mathematically when a given Riemannian manifold admits a nontrivial closed conformal vector field. Let <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^n, g)$</annotation>\n </semantics></math> be a compact Riemannian <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-manifold with connected non-empty boundary <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>M</mi>\n </mrow>\n <annotation>$\\partial M$</annotation>\n </semantics></math>. Assume that there exists a smooth function <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$f>0$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mo>∖</mo>\n <mi>∂</mi>\n <mi>M</mi>\n </mrow>\n <annotation>$M \\setminus \\partial M$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>M</mi>\n <mo>=</mo>\n <msup>\n <mi>f</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\partial M = f^{-1}(0)$</annotation>\n </semantics></math> satisfying the static vacuum equation. We prove that if <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^n, g)$</annotation>\n </semantics></math> admits a nontrivial closed conformal vector field, then <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> must be isometric to a hemisphere <span></span><math>\n <semantics>\n <msubsup>\n <mi>S</mi>\n <mo>+</mo>\n <mi>n</mi>\n </msubsup>\n <annotation>${\\mathbb {S}}_+^n$</annotation>\n </semantics></math>. We also discuss a static triple <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>M</mi>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <mi>g</mi>\n <mo>,</mo>\n <mi>f</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M^n, g, f)$</annotation>\n </semantics></math> admitting a nontrivial conformal vector field which is not necessarily closed.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3061-3074"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70025","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate cosmic no-hair properties mathematically when a given Riemannian manifold admits a nontrivial closed conformal vector field. Let be a compact Riemannian -manifold with connected non-empty boundary . Assume that there exists a smooth function on with in and satisfying the static vacuum equation. We prove that if admits a nontrivial closed conformal vector field, then must be isometric to a hemisphere . We also discuss a static triple admitting a nontrivial conformal vector field which is not necessarily closed.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index