{"title":"Understanding Bias Stress-Induced Instabilities in ALD-Deposited ZnO FeFETs Featuring HZO-Al2O3-HZO Ferroelectric Stack","authors":"Chen Sun;Qiwen Kong;Gan Liu;Dong Zhang;Leming Jiao;Xiaolin Wang;Jishen Zhang;Haiwen Xu;Yang Feng;Rui Shao;Yue Chen;Xiao Gong","doi":"10.1109/LED.2024.3462933","DOIUrl":"10.1109/LED.2024.3462933","url":null,"abstract":"In this work, we investigate the threshold voltage (\u0000<inline-formula> <tex-math>${V}_{text {TH}}text {)}$ </tex-math></inline-formula>\u0000 and memory window (MW) dynamics under positive and negative bias stress (PBS/NBS) in atomic layer deposition (ALD)-grown zinc oxide (ZnO) ferroelectric field-effect transistors (FeFETs). The gate stack is engineered by inserting an Al2O3 layer between Zr-doped HfO2 (HZO) layers to form an HZO-Al2O3-HZO configuration. This enhances the MW of ZnO FeFETs to 1.75 V compared to devices without the Al2O3 insertion. From bias stress characterizations, notable results are obtained, especially under NBS conditions. It is revealed that the generation of disorder state (DS) O\u0000<inline-formula> <tex-math>$^{{2}-}$ </tex-math></inline-formula>\u0000 defects plays a key role when devices are stressed by negative bias, leading to an abnormal positive shift in \u0000<inline-formula> <tex-math>${V}_{text {TH}}$ </tex-math></inline-formula>\u0000. Importantly, the degradation in MW caused by polarization pinning during NBS is mitigated by applying an even more negative bias. This can be explained by enhanced polarization erasing due to NBS. Our investigations provide a deep understanding of bias stress-induced instabilities in ALD-deposited ZnO FeFETs.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2122-2125"},"PeriodicalIF":4.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"80 Gbps PAM-4 Data Transmission With 940 nm VCSELs Grown on a 330 μm Ge Substrate","authors":"Yun-Cheng Yang;Zeyu Wan;Chih-Chuan Chiu;I-Chi Liu;Guangrui Xia;Chao-Hsin Wu","doi":"10.1109/LED.2024.3462949","DOIUrl":"10.1109/LED.2024.3462949","url":null,"abstract":"940 nm oxide-confined vertical-cavity surface-emitting lasers (VCSELs) on \u0000<inline-formula> <tex-math>$330~mu $ </tex-math></inline-formula>\u0000 m thick Ge bulk substrates were fabricated and characterized, presenting a novel approach to VCSEL manufacturing. The wafer surfaces demonstrated high smoothness and flatness, with a peak-to-valley wafer distortion of \u0000<inline-formula> <tex-math>$50.3~mu $ </tex-math></inline-formula>\u0000 m, a root mean square roughness (Rq) of 1.34 nm, and an average wafer bow-warp of \u0000<inline-formula> <tex-math>$3.77~mu $ </tex-math></inline-formula>\u0000 m. The Fabry-Pérot dip precisely aligned with the target wavelength, while stopband center mapping exhibited excellent uniformity across the wafer, with a 1.937 nm (0.206%) standard deviation. At 300 K, the Ge-based VCSEL with a \u0000<inline-formula> <tex-math>$6~mu $ </tex-math></inline-formula>\u0000 m oxide aperture achieved an optical peak power of 5.5 mW and a maximum modulation bandwidth of 19.8 GHz, with a roll-over current surpassing 16 mA. Furthermore, the device demonstrated successful data transmission at 53.125 Gbps and 80 Gbps using PAM-4 modulation, achieving transmitter and dispersion eye closure quaternary (TDECQ) penalties of 1.36 dB and 4.70 dB, respectively. These results underscore the potential of thin Ge substrates in advancing VCSEL technology for high-speed optical communication applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2070-2073"},"PeriodicalIF":4.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karol Dąbrowski;Łukasz Kubiszyn;Waldemar Gawron;Bartłomiej Seredyński;Krystian Michalczewski;Chao-Hsin Wu;Yuh-Renn Wu;Piotr Martyniuk
{"title":"The Response Time of the High Operating Temperature and Very Long Wavelength Type-II Superlattice InAs/InAsSb Interband Cascade Photodetectors","authors":"Karol Dąbrowski;Łukasz Kubiszyn;Waldemar Gawron;Bartłomiej Seredyński;Krystian Michalczewski;Chao-Hsin Wu;Yuh-Renn Wu;Piotr Martyniuk","doi":"10.1109/LED.2024.3462152","DOIUrl":"10.1109/LED.2024.3462152","url":null,"abstract":"The paper shows III-V InAs/InAsSb type-II superlattice (T2SL) very long wavelength (VLWIR, 100% cut-off wavelength, \u0000<inline-formula> <tex-math>$lambda _{textit {cut}-textit {off}}~sim ~16.5~mu $ </tex-math></inline-formula>\u0000m at 330 K) interband cascade photodetector designed to operate >300 K. The device circumvents the low quantum efficiency (QE) and resistance issues of the conventional “thick absorber” photovoltaic detectors designed for high operating temperature (HOT, >300 K) conditions. The 3-stage detector was grown by molecular beam epitaxy (MBE) on the lattice-mismatched GaAs substrates and GaSb buffer layer where stages were connected by the highly doped typical n+/p+ tunnel junctions. The time constant of the unbiased device reaches ~2.83 ns (210 K) and ~0.5 ns (330 K).","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2158-2161"},"PeriodicalIF":4.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10681300","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal Instability Compensation of Synaptic 3D Flash Memory-Based Hardware Neural Networks With Adaptive Read Bias","authors":"Jangsaeng Kim;Jiseong Im;Jong-Ho Lee","doi":"10.1109/LED.2024.3459615","DOIUrl":"10.1109/LED.2024.3459615","url":null,"abstract":"Ambient temperature variations caused by extensive operations in hardware neural networks (HNNs) are a critical issue that significantly degrades performance. In this work, HNNs based on synaptic 3D flash memory with high area and energy efficiency are proposed. The impact of ambient temperature on synaptic weights composed of pairs of synaptic devices was investigated. Our proposed thermal instability compensation method using adaptive read bias restores distorted outputs with a low hardware burden. The effective weight modulation with adaptive read bias successfully recovers HNN performance to near baseline even at a high ambient temperature of 100°C.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2233-2236"},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Highly Reliable 4 Mb FeRAM Using a Newly Developed PLZT Capacitor With a Bi-Doped SRO Interlayer","authors":"W. Wang;T. Eshita;K. Takai;S. Amari;K. Nakamura;M. Oikawa;N. Sato;S. Ozawa;M. Nakabayashi;S. Mihara;Y. Hikosaka;H. Saito;K. Inoue;K. Nagai","doi":"10.1109/LED.2024.3459044","DOIUrl":"10.1109/LED.2024.3459044","url":null,"abstract":"We successfully developed a lanthanum (La)-doped Pb(Zr,Ti)O\u0000<inline-formula> <tex-math>$_{boldsymbol {textbf {3}}}$ </tex-math></inline-formula>\u0000 (PLZT)-based ferroelectric random access memory (FeRAM) with a newly developed ferroelectric capacitor (FC) employing bismuth (Bi)-doped SrRuO\u0000<inline-formula> <tex-math>$_{boldsymbol {textbf {3}}}$ </tex-math></inline-formula>\u0000 (B-SRO), aiming to improve the electrical properties and reliability of the FC. Sputter-deposited SrRuO\u0000<inline-formula> <tex-math>$_{boldsymbol {textbf {3}}}$ </tex-math></inline-formula>\u0000, commonly used as an interlayer between the metal electrode and ferroelectric layers to improve FC characteristics, does not necessarily result in good electrical properties due to the low atomic density of SRO, typically up to 85%. To address this, we employed a B-SRO interlayer deposited by a B-SRO target with an atomic density up to 95%. FCs utilizing B-SRO exhibit significantly better electrical properties, endurance (\u0000<inline-formula> <tex-math>$gt 10^{boldsymbol {textbf {14}}}$ </tex-math></inline-formula>\u0000 at 90°C), and retention (approximately 10 years at 125°C) compared to FCs without B-SRO. Reliability tests based on JESD22-A108 standards, confirm that our 4Mb FeRAM with B-SRO is highly reliable and commercially available.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2126-2129"},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Suppressed Transverse Mode Generation in TF-SAW Resonators Based on LiTaO3/Sapphire","authors":"Junyao Shen;Wenfeng Yao;Temesgen Bailie Workie;Quhuan Shen;Qiufeng Xu;Jingfu Bao;Ken-Ya Hashimoto","doi":"10.1109/LED.2024.3459023","DOIUrl":"10.1109/LED.2024.3459023","url":null,"abstract":"Thin-film surface acoustic wave (TF-SAW) devices are important for wireless communication systems in the new age. Nevertheless, there are still some technical challenges including transverse mode suppression. To find out a practical solution for the challenge, this work theoretically and experimentally investigates transverse mode generation in TF-SAW devices based on LiTaO3/sapphire in which only mature and commercial materials are adopted. The devices with various Al thicknesses and wavelengths are simulated, and slowness curves, admittance curve and displacement distributions are all analyzed. A large range of wavelength from \u0000<inline-formula> <tex-math>$1.6~mu $ </tex-math></inline-formula>\u0000m to \u0000<inline-formula> <tex-math>$4~mu $ </tex-math></inline-formula>\u0000m or even larger is found for the devices to have flat slowness curves. TF-SAW resonators based on LiTaO3/sapphire without any designs for transverse mode suppression are fabricated. The transverse modes in the resonators with wavelength from \u0000<inline-formula> <tex-math>$1.6~mu $ </tex-math></inline-formula>\u0000m to \u0000<inline-formula> <tex-math>$3.8~mu $ </tex-math></inline-formula>\u0000m are all dramatically suppressed, agreeing well with the theoretical results. We believe that the suppression is sufficient, even though the transverse modes still exist. This work proposes a method to obtain TF-SAW devices with suppressed transverse mode generation, showing the strengths of LiTaO3/sapphire structure and promoting the development of TF-SAW technology.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2241-2244"},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xujin Song;Dijiang Sun;Chenxi Yu;Shangze Li;Zheng Zhou;Xiaoyan Liu;Jinfeng Kang
{"title":"Optimized MFS Stack With N-Doped TiO2 Channel and La-Doped HfO2 Ferroelectric Layer for Highly Stable FeFETs","authors":"Xujin Song;Dijiang Sun;Chenxi Yu;Shangze Li;Zheng Zhou;Xiaoyan Liu;Jinfeng Kang","doi":"10.1109/LED.2024.3458999","DOIUrl":"10.1109/LED.2024.3458999","url":null,"abstract":"In this study, an optimized metal-ferroelectric –semiconductor (MFS) stack containing a La-doped HfO2(HLO) ferroelectric (FE) layer and an N-doped TiO2 (NTO) channel is proposed and used to fabricate highly stable ferroelectric field-effect transistors (FeFETs). HLO and NTO were continuously deposited via atomic layer deposition without breaking the vacuum. Uniform and crystallized FE layers and channels are confirmed in the optimized MFS stack. The fabricated FeFETs exhibit excellent electrical and thermal stability, including a 1.82-V memory window (MW) and high endurance over \u0000<inline-formula> <tex-math>$10^{{8}}$ </tex-math></inline-formula>\u0000 cycles with a wide process window above 700°C during rapid thermal annealing. Moreover, ambient stability of oxide semiconductor channel-based FeFETs with 115-mV MW shift after one year of air exposure without a passivation layer was demonstrated for the first time.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2213-2216"},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicola Rinaldi;Alexander May;Mathias Rommel;Rosalba Liguori;Alfredo Rubino;Gian Domenico Licciardo;Luigi Di Benedetto
{"title":"A 4H-SiC NMOSFET-Based Temperature Sensor Operating Between 14K and 481 K","authors":"Nicola Rinaldi;Alexander May;Mathias Rommel;Rosalba Liguori;Alfredo Rubino;Gian Domenico Licciardo;Luigi Di Benedetto","doi":"10.1109/LED.2024.3459049","DOIUrl":"10.1109/LED.2024.3459049","url":null,"abstract":"The experimental characteristics of a temperature sensor based on a 4H-SiC diode-connected lateral NMOSFET are shown in the range between 14K and 481K. The device is fully compatible with 4H-SiC CMOS technology. The analysis of the sensor characteristics reveals a main temperature dependence on the threshold voltage compared to the channel mobility. Due to the oxide/semiconductor interface traps, the sensor characteristic is divided in three temperature ranges to obtain a good linearity: in 14K \u0000<inline-formula> <tex-math>$leq $ </tex-math></inline-formula>\u0000 T \u0000<inline-formula> <tex-math>$leq 200$ </tex-math></inline-formula>\u0000K, the sensitivity is 53.46mV/K, the rms error is 5.49K and the coefficient of determination is 0.9927 for a bias current of \u0000<inline-formula> <tex-math>$1.59mu $ </tex-math></inline-formula>\u0000A; instead, a current of \u0000<inline-formula> <tex-math>$100mu $ </tex-math></inline-formula>\u0000A permits to have a maximum coefficient of determination of 0.9708 with a sensitivity of 29.9mV/K for 200K < T \u0000<inline-formula> <tex-math>$leq 394$ </tex-math></inline-formula>\u0000K, and a linearity of 0.9926 with a sensitivity of 13.72mV/K at T >394K. Finally, for currents between 870nA and \u0000<inline-formula> <tex-math>$9mu $ </tex-math></inline-formula>\u0000A the linearity is higher than 0.95 in all temperature ranges.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2181-2184"},"PeriodicalIF":4.1,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10679237","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extended Tauc-Lorentz Model for Amorphous Materials With Non-Exponential Band Tails","authors":"Yuri Vygranenko;Guilherme Lavareda","doi":"10.1109/LED.2024.3458392","DOIUrl":"10.1109/LED.2024.3458392","url":null,"abstract":"Dielectric function models are essential for determining the optical constants of a substance as a function of photon energy using optical transmission, reflection or spectroscopic ellipsometry measurements. In this letter, we present an extended Tauc–Lorentz model tailored for amorphous materials with non-exponential band tails. Our method employs an exponential function with a polynomial argument to define the imaginary part of the dielectric function in the sub-gap region, with the polynomial order varying based on the complexity of sub-gap absorption features and the precision of the fitted experimental data. The real part of the dielectric function is obtained through the Kramers–Kronig relations as a sum of two components associated with interband and sub-gap transitions, allowing for the comparison of their contributions. These components are calculated analytically and numerically, simplifying the model’s implementation. We illustrate the model’s application by extracting the optical constants from the transmission spectrum of a hydrogenated silicon nitride thin film.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2146-2149"},"PeriodicalIF":4.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dual-Site Crystallization Regulation for Highly Efficient and Stable Perovskite Solar Cells","authors":"Jianing Xi;Yi Zhang;Hanxiao Gao;Zhuowei Li;Chunyu Liu;Wenbin Guo","doi":"10.1109/LED.2024.3458056","DOIUrl":"10.1109/LED.2024.3458056","url":null,"abstract":"Two-step sequential deposition method has been widely used to fabricate high-performance FAPbI3-based perovskite solar cells (PSCs). However, fast reaction between FAI and PbI2 always leads to an incomplete reaction and poor crystal quality. Here, 1-ethyl-3-methylimidazolium trifluoroacetate (EMIMTFA) is added to the FAI precursor solution, so as to regulate the crystallization behavior and obtain high-quality FAPbI3 perovskite films. The EMIMTFA can chemically interact simultaneously with FAI and PbI2, which will slow down the crystallization process of the perovskite film, achieving enlarged grain size, enhanced orientation and minimized defects, as well as less PbI2 residue. As a result, the PSCs with EMIMTFA achieve a champion efficiency of 24.31%, maintaining 90% of their initial efficiency after 1000 h under dark conditions in a N2-filled glove box. This study provides an efficient dual-site crystallization regulation strategy for the growth of high-quality FAPbI3 films.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 11","pages":"2154-2157"},"PeriodicalIF":4.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142222885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}