通过添加IGZO层稳定高湿环境下的ALD超薄In₂O₃TFTs

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shanshan Ju;Jinxiong Li;Yupu Tang;Wei Qian;Fangxing Zhang;Jianzhang Zhu;Xu Tian;Songjie Yang;Lining Zhang;Lei Lu;Shengdong Zhang;Xinwei Wang
{"title":"通过添加IGZO层稳定高湿环境下的ALD超薄In₂O₃TFTs","authors":"Shanshan Ju;Jinxiong Li;Yupu Tang;Wei Qian;Fangxing Zhang;Jianzhang Zhu;Xu Tian;Songjie Yang;Lining Zhang;Lei Lu;Shengdong Zhang;Xinwei Wang","doi":"10.1109/LED.2025.3548694","DOIUrl":null,"url":null,"abstract":"Atomic-layer-deposited (ALD) ultrathin In2O3 thin-film transistors (TFTs) are highly promising for applications in state-of-the-art displays, flexible electronics, and back-end-of-line (BEOL) integration. However, these TFTs often suffer from pronounced bias-stress instability, which is further magnified under humid ambient. To address this issue, we herein propose a bilayer strategy, where an InGaZnO (IGZO) layer is directly sputtered on the ALD In2O3 channel layer to afford In2O3/IGZO TFTs. The added IGZO layer not only can prevent any direct gas adsorption on the sensitive In2O3 surface, but it also can substantially reduce the surface field strength near S/D to mitigate the risk of water electrolysis from a humid ambient. As a result, the In2O3/IGZO TFTs show one-order-of-magnitude improvement in threshold voltage (<inline-formula> <tex-math>${V}_{\\textit {th}}$ </tex-math></inline-formula>) shift under both PBS and NBS conditions in high-humidity ambient (85% relative humidity (RH)).","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"773-776"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing ALD Ultrathin In₂O₃ TFTs Under High Humidity Ambient by an Added IGZO Layer\",\"authors\":\"Shanshan Ju;Jinxiong Li;Yupu Tang;Wei Qian;Fangxing Zhang;Jianzhang Zhu;Xu Tian;Songjie Yang;Lining Zhang;Lei Lu;Shengdong Zhang;Xinwei Wang\",\"doi\":\"10.1109/LED.2025.3548694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomic-layer-deposited (ALD) ultrathin In2O3 thin-film transistors (TFTs) are highly promising for applications in state-of-the-art displays, flexible electronics, and back-end-of-line (BEOL) integration. However, these TFTs often suffer from pronounced bias-stress instability, which is further magnified under humid ambient. To address this issue, we herein propose a bilayer strategy, where an InGaZnO (IGZO) layer is directly sputtered on the ALD In2O3 channel layer to afford In2O3/IGZO TFTs. The added IGZO layer not only can prevent any direct gas adsorption on the sensitive In2O3 surface, but it also can substantially reduce the surface field strength near S/D to mitigate the risk of water electrolysis from a humid ambient. As a result, the In2O3/IGZO TFTs show one-order-of-magnitude improvement in threshold voltage (<inline-formula> <tex-math>${V}_{\\\\textit {th}}$ </tex-math></inline-formula>) shift under both PBS and NBS conditions in high-humidity ambient (85% relative humidity (RH)).\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 5\",\"pages\":\"773-776\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10914570/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10914570/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

原子层沉积(ALD)超薄In2O3薄膜晶体管(tft)在最先进的显示器,柔性电子和后端线(BEOL)集成中具有很高的应用前景。然而,这些tft经常遭受明显的偏应力不稳定性,在潮湿环境下进一步放大。为了解决这个问题,我们提出了一种双层策略,将InGaZnO (IGZO)层直接溅射到ALD In2O3通道层上,以提供In2O3/IGZO tft。添加的IGZO层不仅可以防止敏感的In2O3表面直接吸附气体,而且还可以大大降低S/D附近的表面场强,以减轻潮湿环境中水电解的风险。结果表明,在高湿度环境(85%相对湿度)下,在PBS和NBS条件下,In2O3/IGZO TFTs的阈值电压(${V}_{\textit {th}}$)位移都有一个数量级的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing ALD Ultrathin In₂O₃ TFTs Under High Humidity Ambient by an Added IGZO Layer
Atomic-layer-deposited (ALD) ultrathin In2O3 thin-film transistors (TFTs) are highly promising for applications in state-of-the-art displays, flexible electronics, and back-end-of-line (BEOL) integration. However, these TFTs often suffer from pronounced bias-stress instability, which is further magnified under humid ambient. To address this issue, we herein propose a bilayer strategy, where an InGaZnO (IGZO) layer is directly sputtered on the ALD In2O3 channel layer to afford In2O3/IGZO TFTs. The added IGZO layer not only can prevent any direct gas adsorption on the sensitive In2O3 surface, but it also can substantially reduce the surface field strength near S/D to mitigate the risk of water electrolysis from a humid ambient. As a result, the In2O3/IGZO TFTs show one-order-of-magnitude improvement in threshold voltage ( ${V}_{\textit {th}}$ ) shift under both PBS and NBS conditions in high-humidity ambient (85% relative humidity (RH)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信