Seokjun Kim;Eungkyun Kim;Husam Walwil;Daniel C. Shoemaker;Jimy Encomendero;Matthew T. DeJarld;Maher B. Tahhan;Eduardo M. Chumbes;Jeffrey R. Laroche;Debdeep Jena;Huili G. Xing;Sukwon Choi
{"title":"国外衬底上AlN/GaN/AlN hemt的热特性与设计","authors":"Seokjun Kim;Eungkyun Kim;Husam Walwil;Daniel C. Shoemaker;Jimy Encomendero;Matthew T. DeJarld;Maher B. Tahhan;Eduardo M. Chumbes;Jeffrey R. Laroche;Debdeep Jena;Huili G. Xing;Sukwon Choi","doi":"10.1109/LED.2025.3548853","DOIUrl":null,"url":null,"abstract":"AlN/GaN/AlN high electron mobility transistors (HEMTs) offer enhanced carrier confinement and higher breakdown voltage than conventional AlGaN/GaN HEMTs. In this work, Raman thermometry was used to characterize the self-heating behavior of a single-finger AlN/GaN/AlN HEMT on 6H-SiC. A 3D finite element analysis model was created to optimize the thermal design of the device structure. Simulation results reveal that the optimal buffer layer thicknesses to minimize the channel temperature rise of AlN/GaN/AlN HEMTs on 6H-SiC and diamond substrates are <inline-formula> <tex-math>$\\sim 2~\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$\\sim 0.7~\\mu $ </tex-math></inline-formula>m, respectively. Moreover, diamond substrate integration further enhances the thermal performance, achieving a ~45% and ~53% reduction in the device thermal resistance as compared to those of an AlN/GaN/AlN HEMT on 6H-SiC and an AlGaN/GaN HEMT on 4H-SiC, respectively.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"817-820"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Characterization and Design of AlN/GaN/AlN HEMTs on Foreign Substrates\",\"authors\":\"Seokjun Kim;Eungkyun Kim;Husam Walwil;Daniel C. Shoemaker;Jimy Encomendero;Matthew T. DeJarld;Maher B. Tahhan;Eduardo M. Chumbes;Jeffrey R. Laroche;Debdeep Jena;Huili G. Xing;Sukwon Choi\",\"doi\":\"10.1109/LED.2025.3548853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AlN/GaN/AlN high electron mobility transistors (HEMTs) offer enhanced carrier confinement and higher breakdown voltage than conventional AlGaN/GaN HEMTs. In this work, Raman thermometry was used to characterize the self-heating behavior of a single-finger AlN/GaN/AlN HEMT on 6H-SiC. A 3D finite element analysis model was created to optimize the thermal design of the device structure. Simulation results reveal that the optimal buffer layer thicknesses to minimize the channel temperature rise of AlN/GaN/AlN HEMTs on 6H-SiC and diamond substrates are <inline-formula> <tex-math>$\\\\sim 2~\\\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$\\\\sim 0.7~\\\\mu $ </tex-math></inline-formula>m, respectively. Moreover, diamond substrate integration further enhances the thermal performance, achieving a ~45% and ~53% reduction in the device thermal resistance as compared to those of an AlN/GaN/AlN HEMT on 6H-SiC and an AlGaN/GaN HEMT on 4H-SiC, respectively.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 5\",\"pages\":\"817-820\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10915643/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10915643/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
AlN/GaN/AlN高电子迁移率晶体管(hemt)比传统的AlGaN/GaN hemt具有更强的载流子约束和更高的击穿电压。在这项工作中,拉曼测温法用于表征单指AlN/GaN/AlN HEMT在6H-SiC上的自加热行为。为优化器件结构的热设计,建立了三维有限元分析模型。仿真结果表明,在6H-SiC和金刚石衬底上,减小AlN/GaN/AlN hemt通道温升的最佳缓冲层厚度分别为$\sim 2~\mu $ m和$\sim 0.7~\mu $ m。此外,金刚石衬底集成进一步提高了热性能,实现了45% and ~53% reduction in the device thermal resistance as compared to those of an AlN/GaN/AlN HEMT on 6H-SiC and an AlGaN/GaN HEMT on 4H-SiC, respectively.
Thermal Characterization and Design of AlN/GaN/AlN HEMTs on Foreign Substrates
AlN/GaN/AlN high electron mobility transistors (HEMTs) offer enhanced carrier confinement and higher breakdown voltage than conventional AlGaN/GaN HEMTs. In this work, Raman thermometry was used to characterize the self-heating behavior of a single-finger AlN/GaN/AlN HEMT on 6H-SiC. A 3D finite element analysis model was created to optimize the thermal design of the device structure. Simulation results reveal that the optimal buffer layer thicknesses to minimize the channel temperature rise of AlN/GaN/AlN HEMTs on 6H-SiC and diamond substrates are $\sim 2~\mu $ m and $\sim 0.7~\mu $ m, respectively. Moreover, diamond substrate integration further enhances the thermal performance, achieving a ~45% and ~53% reduction in the device thermal resistance as compared to those of an AlN/GaN/AlN HEMT on 6H-SiC and an AlGaN/GaN HEMT on 4H-SiC, respectively.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.