Thermal Characterization and Design of AlN/GaN/AlN HEMTs on Foreign Substrates

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Seokjun Kim;Eungkyun Kim;Husam Walwil;Daniel C. Shoemaker;Jimy Encomendero;Matthew T. DeJarld;Maher B. Tahhan;Eduardo M. Chumbes;Jeffrey R. Laroche;Debdeep Jena;Huili G. Xing;Sukwon Choi
{"title":"Thermal Characterization and Design of AlN/GaN/AlN HEMTs on Foreign Substrates","authors":"Seokjun Kim;Eungkyun Kim;Husam Walwil;Daniel C. Shoemaker;Jimy Encomendero;Matthew T. DeJarld;Maher B. Tahhan;Eduardo M. Chumbes;Jeffrey R. Laroche;Debdeep Jena;Huili G. Xing;Sukwon Choi","doi":"10.1109/LED.2025.3548853","DOIUrl":null,"url":null,"abstract":"AlN/GaN/AlN high electron mobility transistors (HEMTs) offer enhanced carrier confinement and higher breakdown voltage than conventional AlGaN/GaN HEMTs. In this work, Raman thermometry was used to characterize the self-heating behavior of a single-finger AlN/GaN/AlN HEMT on 6H-SiC. A 3D finite element analysis model was created to optimize the thermal design of the device structure. Simulation results reveal that the optimal buffer layer thicknesses to minimize the channel temperature rise of AlN/GaN/AlN HEMTs on 6H-SiC and diamond substrates are <inline-formula> <tex-math>$\\sim 2~\\mu $ </tex-math></inline-formula>m and <inline-formula> <tex-math>$\\sim 0.7~\\mu $ </tex-math></inline-formula>m, respectively. Moreover, diamond substrate integration further enhances the thermal performance, achieving a ~45% and ~53% reduction in the device thermal resistance as compared to those of an AlN/GaN/AlN HEMT on 6H-SiC and an AlGaN/GaN HEMT on 4H-SiC, respectively.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"817-820"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10915643/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

AlN/GaN/AlN high electron mobility transistors (HEMTs) offer enhanced carrier confinement and higher breakdown voltage than conventional AlGaN/GaN HEMTs. In this work, Raman thermometry was used to characterize the self-heating behavior of a single-finger AlN/GaN/AlN HEMT on 6H-SiC. A 3D finite element analysis model was created to optimize the thermal design of the device structure. Simulation results reveal that the optimal buffer layer thicknesses to minimize the channel temperature rise of AlN/GaN/AlN HEMTs on 6H-SiC and diamond substrates are $\sim 2~\mu $ m and $\sim 0.7~\mu $ m, respectively. Moreover, diamond substrate integration further enhances the thermal performance, achieving a ~45% and ~53% reduction in the device thermal resistance as compared to those of an AlN/GaN/AlN HEMT on 6H-SiC and an AlGaN/GaN HEMT on 4H-SiC, respectively.
国外衬底上AlN/GaN/AlN hemt的热特性与设计
AlN/GaN/AlN高电子迁移率晶体管(hemt)比传统的AlGaN/GaN hemt具有更强的载流子约束和更高的击穿电压。在这项工作中,拉曼测温法用于表征单指AlN/GaN/AlN HEMT在6H-SiC上的自加热行为。为优化器件结构的热设计,建立了三维有限元分析模型。仿真结果表明,在6H-SiC和金刚石衬底上,减小AlN/GaN/AlN hemt通道温升的最佳缓冲层厚度分别为$\sim 2~\mu $ m和$\sim 0.7~\mu $ m。此外,金刚石衬底集成进一步提高了热性能,实现了45% and ~53% reduction in the device thermal resistance as compared to those of an AlN/GaN/AlN HEMT on 6H-SiC and an AlGaN/GaN HEMT on 4H-SiC, respectively.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信