MEMS谐振器三维结构的双模逆设计

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Binzhou Zuo;Zeyu Wu;Junyuan Zhao;Bo Niu;Yumo Lei;Lixin Cao;Yinfang Zhu;Jinling Yang
{"title":"MEMS谐振器三维结构的双模逆设计","authors":"Binzhou Zuo;Zeyu Wu;Junyuan Zhao;Bo Niu;Yumo Lei;Lixin Cao;Yinfang Zhu;Jinling Yang","doi":"10.1109/LED.2025.3548612","DOIUrl":null,"url":null,"abstract":"This work presents an automated algorithm for MEMS resonator structure generation based on inverse design, integrating deep learning and neural networks to predict key physical properties, including resonance frequency (f), quality factor of thermoelastic damping (Q<inline-formula> <tex-math>${}_{\\textit {TED}}$ </tex-math></inline-formula>), and motional impedance (Rx). Unlike traditional methods relying on finite element analysis (FEA), this approach leverages a database-driven deep learning model, achieving prediction speeds 9,740 times faster than the conventional FEA software with an average accuracy of 97.5%, 96.5%, 96.4 for f, Q<inline-formula> <tex-math>${}_{\\textit {TED}}$ </tex-math></inline-formula> and Rx,respectively. The algorithm supports flexural and Lamé modes and could generate resonators with a broad frequency range from ~8 to ~63 MHz, significantly surpassing existing methods. By efficiently predicting seed structures, the method guides the inverse design process, generating high Q, and low Rx resonator structures within 10 minutes. The generated devices exhibit deviations of less than 3% from target performance metrics. Simulations and experimental results validate the feasibility and effectiveness of the proposed algorithm, highlighting its potential for accelerating MEMS design with enhanced performance and precision.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"841-844"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-Mode Inverse Design of 3D Structures for MEMS Resonators\",\"authors\":\"Binzhou Zuo;Zeyu Wu;Junyuan Zhao;Bo Niu;Yumo Lei;Lixin Cao;Yinfang Zhu;Jinling Yang\",\"doi\":\"10.1109/LED.2025.3548612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an automated algorithm for MEMS resonator structure generation based on inverse design, integrating deep learning and neural networks to predict key physical properties, including resonance frequency (f), quality factor of thermoelastic damping (Q<inline-formula> <tex-math>${}_{\\\\textit {TED}}$ </tex-math></inline-formula>), and motional impedance (Rx). Unlike traditional methods relying on finite element analysis (FEA), this approach leverages a database-driven deep learning model, achieving prediction speeds 9,740 times faster than the conventional FEA software with an average accuracy of 97.5%, 96.5%, 96.4 for f, Q<inline-formula> <tex-math>${}_{\\\\textit {TED}}$ </tex-math></inline-formula> and Rx,respectively. The algorithm supports flexural and Lamé modes and could generate resonators with a broad frequency range from ~8 to ~63 MHz, significantly surpassing existing methods. By efficiently predicting seed structures, the method guides the inverse design process, generating high Q, and low Rx resonator structures within 10 minutes. The generated devices exhibit deviations of less than 3% from target performance metrics. Simulations and experimental results validate the feasibility and effectiveness of the proposed algorithm, highlighting its potential for accelerating MEMS design with enhanced performance and precision.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 5\",\"pages\":\"841-844\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10915677/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10915677/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于逆设计的MEMS谐振器结构自动生成算法,集成深度学习和神经网络来预测关键物理特性,包括共振频率(f)、热弹性阻尼质量因子(Q ${}_{\textit {TED}}$)和运动阻抗(Rx)。与依赖有限元分析(FEA)的传统方法不同,该方法利用数据库驱动的深度学习模型,实现了比传统有限元分析软件快9740倍的预测速度,f、Q ${}_{\textit {TED}}$和Rx的平均准确率分别为97.5%、96.5%和96.4。该算法支持弯曲和lam模式,可以产生~8 ~ ~63 MHz宽频率范围的谐振器,显著优于现有方法。通过有效预测种子结构,该方法指导逆向设计过程,在10分钟内生成高Q和低Rx谐振器结构。生成的设备与目标性能指标的偏差小于3%。仿真和实验结果验证了该算法的可行性和有效性,突出了其在加速MEMS设计、提高性能和精度方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-Mode Inverse Design of 3D Structures for MEMS Resonators
This work presents an automated algorithm for MEMS resonator structure generation based on inverse design, integrating deep learning and neural networks to predict key physical properties, including resonance frequency (f), quality factor of thermoelastic damping (Q ${}_{\textit {TED}}$ ), and motional impedance (Rx). Unlike traditional methods relying on finite element analysis (FEA), this approach leverages a database-driven deep learning model, achieving prediction speeds 9,740 times faster than the conventional FEA software with an average accuracy of 97.5%, 96.5%, 96.4 for f, Q ${}_{\textit {TED}}$ and Rx,respectively. The algorithm supports flexural and Lamé modes and could generate resonators with a broad frequency range from ~8 to ~63 MHz, significantly surpassing existing methods. By efficiently predicting seed structures, the method guides the inverse design process, generating high Q, and low Rx resonator structures within 10 minutes. The generated devices exhibit deviations of less than 3% from target performance metrics. Simulations and experimental results validate the feasibility and effectiveness of the proposed algorithm, highlighting its potential for accelerating MEMS design with enhanced performance and precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信