{"title":"Corrigendum: Graph bundles and Ricci-flatness","authors":"Wenbo Li, Shiping Liu","doi":"10.1112/blms.70111","DOIUrl":"https://doi.org/10.1112/blms.70111","url":null,"abstract":"<p>This note is a corrigendum to the authors' paper “Graph bundles and Ricci–flatness, Bulletin of the London Mathematical Society, 56(2), pp. 523–535, 2024”.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1921-1922"},"PeriodicalIF":0.8,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144245168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorena Aguirre Salazar, Xin Yang Lu, Jun-cheng Wei
{"title":"An Ohta–Kawasaki model set on the space","authors":"Lorena Aguirre Salazar, Xin Yang Lu, Jun-cheng Wei","doi":"10.1112/blms.70105","DOIUrl":"https://doi.org/10.1112/blms.70105","url":null,"abstract":"<p>We examine a nonlocal diffuse interface energy with Coulomb repulsion in three dimensions inspired by the Thomas–Fermi–Dirac–von Weizsäcker, and the Ohta–Kawasaki models. We consider the corresponding mass-constrained variational problem and show the existence of minimizers for small masses, and the absence of minimizers for large masses.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2462-2476"},"PeriodicalIF":0.9,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144815248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thurston obstructions and tropical geometry","authors":"Rohini Ramadas","doi":"10.1112/blms.70102","DOIUrl":"https://doi.org/10.1112/blms.70102","url":null,"abstract":"<p>We describe an application of tropical moduli spaces to complex dynamics. A post-critically finite branched covering <span></span><math>\u0000 <semantics>\u0000 <mi>φ</mi>\u0000 <annotation>$varphi$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$S^2$</annotation>\u0000 </semantics></math> induces a pullback map on the Teichmüller space of complex structures of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$S^2$</annotation>\u0000 </semantics></math>; this descends to an algebraic correspondence on the moduli space of point-configurations of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$mathbb {P}^1$</annotation>\u0000 </semantics></math>. We make a case for studying the action of the tropical moduli space correspondence by making explicit the connections between objects that have come up in one guise in tropical geometry and in another guise in complex dynamics. For example, a Thurston obstruction for <span></span><math>\u0000 <semantics>\u0000 <mi>φ</mi>\u0000 <annotation>$varphi$</annotation>\u0000 </semantics></math> corresponds to a ray that is fixed by the tropical moduli space correspondence, and scaled by a factor <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>⩾</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$geqslant 1$</annotation>\u0000 </semantics></math>. This article is intended to be accessible to algebraic and tropical geometers as well as to complex dynamicists.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2404-2428"},"PeriodicalIF":0.9,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144815157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic Behavior of the Bergman Metric at Infinite Type Points","authors":"Ravi Shankar Jaiswal","doi":"10.1112/blms.70100","DOIUrl":"https://doi.org/10.1112/blms.70100","url":null,"abstract":"<p>We investigate nontangential asymptotic limits of the Bergman kernel on the diagonal, and the Bergman metric and its holomorphic sectional curvature at exponentially flat infinite-type boundary points of smooth bounded pseudoconvex domains in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$mathbb {C}^{n + 1}$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>∈</mo>\u0000 <mi>N</mi>\u0000 </mrow>\u0000 <annotation>$n in mathbb {N}$</annotation>\u0000 </semantics></math>. After showing that these objects satisfy the appropriate localizations, we apply the method of scaling to prove our results.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2372-2394"},"PeriodicalIF":0.9,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144815214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Eigenvalue estimate for the \u0000 \u0000 p\u0000 $p$\u0000 -Laplace operator on a connected finite graph","authors":"Lin Feng Wang","doi":"10.1112/blms.70104","DOIUrl":"https://doi.org/10.1112/blms.70104","url":null,"abstract":"<p>In this paper, we consider eigenvalue estimate for the <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-Laplace operator <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>▵</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <annotation>$triangle _p$</annotation>\u0000 </semantics></math> on a connected finite graph with the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>CD</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>,</mo>\u0000 <mn>0</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathrm{CD}_p(m,0)$</annotation>\u0000 </semantics></math> condition for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>></mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$p>1$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>></mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$m>0$</annotation>\u0000 </semantics></math>. We first establish elliptic gradient estimates for solutions to the eigenvalue equation. Then we establish a lower bound estimate for the first nonzero eigenvalue of <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>▵</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <annotation>$triangle _p$</annotation>\u0000 </semantics></math>, which is a generalization not only of the eigenvalue estimate for the manifold setting, but also of the eigenvalue estimate for the <span></span><math>\u0000 <semantics>\u0000 <mi>μ</mi>\u0000 <annotation>$mu$</annotation>\u0000 </semantics></math>-Laplace operator <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>▵</mi>\u0000 <mi>μ</mi>\u0000 </msub>\u0000 <annotation>$triangle _{mu }$</annotation>\u0000 </semantics></math> on the graph with the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>CD</mi>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>,</mo>\u0000 <mn>0</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathrm{CD}(m,0)$</annotation>\u0000 </semantics></math> condition.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2444-2461"},"PeriodicalIF":0.9,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144815241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}