Bulletin of the London Mathematical Society最新文献

筛选
英文 中文
Arithmetic progressions and holomorphic phase retrieval 算术级数和全形相位检索
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-08-13 DOI: 10.1112/blms.13134
Lukas Liehr
{"title":"Arithmetic progressions and holomorphic phase retrieval","authors":"Lukas Liehr","doi":"10.1112/blms.13134","DOIUrl":"https://doi.org/10.1112/blms.13134","url":null,"abstract":"<p>We study the determination of a holomorphic function from its absolute value. Given a parameter <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>θ</mi>\u0000 <mo>∈</mo>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 <annotation>$theta in mathbb {R}$</annotation>\u0000 </semantics></math>, we derive the following characterization of uniqueness in terms of rigidity of a set <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Λ</mi>\u0000 <mo>⊆</mo>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 <annotation>$Lambda subseteq mathbb {R}$</annotation>\u0000 </semantics></math>: if <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$mathcal {F}$</annotation>\u0000 </semantics></math> is a vector space of entire functions containing all exponentials <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>e</mi>\u0000 <mrow>\u0000 <mi>ξ</mi>\u0000 <mi>z</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mspace></mspace>\u0000 <mi>ξ</mi>\u0000 <mo>∈</mo>\u0000 <mi>C</mi>\u0000 <mo>∖</mo>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mn>0</mn>\u0000 <mo>}</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$e^{xi z}, , xi in mathbb {C} setminus lbrace 0 rbrace$</annotation>\u0000 </semantics></math>, then every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <mo>∈</mo>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation>$F in mathcal {F}$</annotation>\u0000 </semantics></math> is uniquely determined up to a unimodular phase factor by <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>{</mo>\u0000 <mo>|</mo>\u0000 <mi>F</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>z</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>|</mo>\u0000 <mo>:</mo>\u0000 <mi>z</mi>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>e</mi>\u0000 <mrow>\u0000 <mi>i</mi>\u0000 <mi>θ</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 ","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3316-3330"},"PeriodicalIF":0.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the maximum field of linearity of linear sets 论线性集合的最大线性域
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-08-13 DOI: 10.1112/blms.13133
Bence Csajbók, Giuseppe Marino, Valentina Pepe
{"title":"On the maximum field of linearity of linear sets","authors":"Bence Csajbók, Giuseppe Marino, Valentina Pepe","doi":"10.1112/blms.13133","DOIUrl":"https://doi.org/10.1112/blms.13133","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>V</mi>\u0000 <annotation>$V$</annotation>\u0000 </semantics></math> denote an <span></span><math>\u0000 <semantics>\u0000 <mi>r</mi>\u0000 <annotation>$r$</annotation>\u0000 </semantics></math>-dimensional <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <msup>\u0000 <mi>q</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 </msub>\u0000 <annotation>$mathbb {F}_{q^n}$</annotation>\u0000 </semantics></math>-vector space. For an <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math>-dimensional <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>q</mi>\u0000 </msub>\u0000 <annotation>$mathbb {F}_q$</annotation>\u0000 </semantics></math>-subspace <span></span><math>\u0000 <semantics>\u0000 <mi>U</mi>\u0000 <annotation>$U$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mi>V</mi>\u0000 <annotation>$V$</annotation>\u0000 </semantics></math>, assume that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mo>dim</mo>\u0000 <mi>q</mi>\u0000 </msub>\u0000 <mfenced>\u0000 <msub>\u0000 <mrow>\u0000 <mo>⟨</mo>\u0000 <mi>v</mi>\u0000 <mo>⟩</mo>\u0000 </mrow>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <msup>\u0000 <mi>q</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 </msub>\u0000 </msub>\u0000 <mo>∩</mo>\u0000 <mi>U</mi>\u0000 </mfenced>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$dim _q left(langle {bf v}rangle _{mathbb {F}_{q^n}} cap Uright) geqslant 2$</annotation>\u0000 </semantics></math> for each nonzero vector <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>v</mi>\u0000 <mo>∈</mo>\u0000 <mi>U</mi>\u0000 </mrow>\u0000 <annotation>${bf v}in U$</annotation>\u0000 </semantics></math>. If <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3300-3315"},"PeriodicalIF":0.8,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autoequivalences of blow-ups of minimal surfaces 极小曲面炸开的自等价性
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-08-08 DOI: 10.1112/blms.13131
Xianyu Hu, Johannes Krah
{"title":"Autoequivalences of blow-ups of minimal surfaces","authors":"Xianyu Hu,&nbsp;Johannes Krah","doi":"10.1112/blms.13131","DOIUrl":"https://doi.org/10.1112/blms.13131","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> be the blow-up of <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>P</mi>\u0000 <mi>C</mi>\u0000 <mn>2</mn>\u0000 </msubsup>\u0000 <annotation>$mathbb {P}^2_mathbb {C}$</annotation>\u0000 </semantics></math> in a finite set of very general points. We deduce from the work of Uehara [Trans. Amer. Math. Soc. <b>371</b> (2019), no. 5, 3529–3547] that <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> has only standard autoequivalences, no non-trivial Fourier–Mukai partners, and admits no spherical objects. If <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> is the blow-up of <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>P</mi>\u0000 <mi>C</mi>\u0000 <mn>2</mn>\u0000 </msubsup>\u0000 <annotation>$mathbb {P}^2_mathbb {C}$</annotation>\u0000 </semantics></math> in 9 very general points, we provide an alternate and direct proof of the corresponding statement. Further, we show that the same result holds if <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> is a blow-up of finitely many points in a minimal surface of non-negative Kodaira dimension which contains no <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(-2)$</annotation>\u0000 </semantics></math>-curves. Independently, we characterize spherical objects on blow-ups of minimal surfaces of positive Kodaira dimension.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3257-3267"},"PeriodicalIF":0.8,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galois invariants of finite abelian descent and Brauer sets 有限阿贝尔后裔和布劳尔集的伽罗瓦不变式
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-08-01 DOI: 10.1112/blms.13130
Brendan Creutz, Jesse Pajwani, José Felipe Voloch
{"title":"Galois invariants of finite abelian descent and Brauer sets","authors":"Brendan Creutz,&nbsp;Jesse Pajwani,&nbsp;José Felipe Voloch","doi":"10.1112/blms.13130","DOIUrl":"https://doi.org/10.1112/blms.13130","url":null,"abstract":"<p>For a variety over a global field, one can consider subsets of the set of adelic points of the variety cut out by finite abelian descent or Brauer–Manin obstructions. Given a Galois extension of the ground field, one can consider similar sets over the extension and take Galois invariants. In this paper, we study under which circumstances the Galois invariants recover the obstruction sets over the ground field. As an application of our results, we study finite abelian descent and Brauer–Manin obstructions for isotrivial curves over function fields and extend results obtained by the first and last authors for constant curves to the isotrivial case.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3240-3256"},"PeriodicalIF":0.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local mirror symmetry via SYZ 通过 SYZ 实现局部镜像对称
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-08-01 DOI: 10.1112/blms.13126
Benjamin Gammage
{"title":"Local mirror symmetry via SYZ","authors":"Benjamin Gammage","doi":"10.1112/blms.13126","DOIUrl":"https://doi.org/10.1112/blms.13126","url":null,"abstract":"<p>In this note, we explain how mirror symmetry for basic local models in the Gross–Siebert program can be understood through the nontoric blowup construction described by Gross–Hacking–Keel. This is part of a program to understand the symplectic geometry of affine cluster varieties through their SYZ fibrations.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3181-3195"},"PeriodicalIF":0.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The inertia bound is far from tight 惯性约束远远不够
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-07-30 DOI: 10.1112/blms.13127
Matthew Kwan, Yuval Wigderson
{"title":"The inertia bound is far from tight","authors":"Matthew Kwan,&nbsp;Yuval Wigderson","doi":"10.1112/blms.13127","DOIUrl":"https://doi.org/10.1112/blms.13127","url":null,"abstract":"&lt;p&gt;The inertia bound and ratio bound (also known as the Cvetković bound and Hoffman bound) are two fundamental inequalities in spectral graph theory, giving upper bounds on the independence number &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$alpha (G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of a graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; in terms of spectral information about a weighted adjacency matrix of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. For both inequalities, given a graph &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, one needs to make a judicious choice of weighted adjacency matrix to obtain as strong a bound as possible. While there is a well-established theory surrounding the ratio bound, the inertia bound is much more mysterious, and its limits are rather unclear. In fact, only recently did Sinkovic find the first example of a graph for which the inertia bound is not tight (for any weighted adjacency matrix), answering a longstanding question of Godsil. We show that the inertia bound can be extremely far from tight, and in fact can significantly underperform the ratio bound: for example, one of our results is that for infinitely many &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, there is an &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-vertex graph for which even the unweighted ratio bound can prove &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;⩽&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$alpha (G)leqslant 4n^{3/4}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, but the inertia bound is always at least &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3196-3208"},"PeriodicalIF":0.8,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13127","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sharp doubling threshold for approximate convexity 近似凸性的急剧加倍阈值
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-07-25 DOI: 10.1112/blms.13129
Peter van Hintum, Peter Keevash
{"title":"The sharp doubling threshold for approximate convexity","authors":"Peter van Hintum,&nbsp;Peter Keevash","doi":"10.1112/blms.13129","DOIUrl":"https://doi.org/10.1112/blms.13129","url":null,"abstract":"&lt;p&gt;We show for &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$A,Bsubset mathbb {R}^d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of equal volume and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$tin (0,1/2]$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; that if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$|tA+(1-t)B|&amp;lt; (1+t^d)|A|$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, then (up to translation) &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;co&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;∪&lt;/mo&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$|operatorname{co}(Acup B)|/|A|$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is bounded. This establishes the sharp threshold for the quantitative stability of the Brunn–Minkowski inequality recently established by ","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3229-3239"},"PeriodicalIF":0.8,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unstability problem of real analytic maps 实解析映射的不稳定性问题
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-07-22 DOI: 10.1112/blms.13124
Karim Bekka, Satoshi Koike, Toru Ohmoto, Masahiro Shiota, Masato Tanabe
{"title":"Unstability problem of real analytic maps","authors":"Karim Bekka,&nbsp;Satoshi Koike,&nbsp;Toru Ohmoto,&nbsp;Masahiro Shiota,&nbsp;Masato Tanabe","doi":"10.1112/blms.13124","DOIUrl":"https://doi.org/10.1112/blms.13124","url":null,"abstract":"<p>As well known, the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$C^infty$</annotation>\u0000 </semantics></math> stability of proper <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$C^infty$</annotation>\u0000 </semantics></math> maps is characterized by the infinitesimal <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$C^infty$</annotation>\u0000 </semantics></math> stability. In the present paper, we study the counterpart in real analytic context. In particular, we show that the infinitesimal <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>ω</mi>\u0000 </msup>\u0000 <annotation>$C^omega$</annotation>\u0000 </semantics></math> stability does not imply <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>ω</mi>\u0000 </msup>\u0000 <annotation>$C^omega$</annotation>\u0000 </semantics></math> stability; for instance, <i>a Whitney umbrella</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {R}^2 rightarrow mathbb {R}^3$</annotation>\u0000 </semantics></math> <i>is not</i> <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>ω</mi>\u0000 </msup>\u0000 <annotation>$C^omega$</annotation>\u0000 </semantics></math> <i>stable</i>. A main tool for the proof is a relative version of Whitney's analytic approximation theorem that is shown by using H. Cartan's Theorems A and B.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3174-3180"},"PeriodicalIF":0.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solubility of additive forms of twice odd degree over totally ramified extensions of Q 2 $mathbb {Q}_2$ 在 Q2$mathbb {Q}_2$ 的完全夯实扩展上的两倍奇数度加法形式的可溶性
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-07-22 DOI: 10.1112/blms.13120
Drew Duncan
{"title":"Solubility of additive forms of twice odd degree over totally ramified extensions of \u0000 \u0000 \u0000 Q\u0000 2\u0000 \u0000 $mathbb {Q}_2$","authors":"Drew Duncan","doi":"10.1112/blms.13120","DOIUrl":"10.1112/blms.13120","url":null,"abstract":"<p>We prove that an additive form of degree <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation>$d=2m$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math> odd over any totally ramified extension of <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>Q</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$mathbb {Q}_2$</annotation>\u0000 </semantics></math> has a nontrivial zero if the number of variables <span></span><math>\u0000 <semantics>\u0000 <mi>s</mi>\u0000 <annotation>$s$</annotation>\u0000 </semantics></math> satisfies <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mo>⩾</mo>\u0000 <mfrac>\u0000 <msup>\u0000 <mi>d</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mn>4</mn>\u0000 </mfrac>\u0000 <mo>+</mo>\u0000 <mn>3</mn>\u0000 <mi>d</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$s geqslant frac{d^2}{4} + 3d + 1$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 10","pages":"3129-3133"},"PeriodicalIF":0.8,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141814035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The uniqueness of the Wiener–Hopf factorisation of Lévy processes and random walks 莱维过程和随机游走的维纳-霍普夫因式分解的唯一性
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-07-17 DOI: 10.1112/blms.13112
Leif Döring, Mladen Savov, Lukas Trottner, Alexander R. Watson
{"title":"The uniqueness of the Wiener–Hopf factorisation of Lévy processes and random walks","authors":"Leif Döring,&nbsp;Mladen Savov,&nbsp;Lukas Trottner,&nbsp;Alexander R. Watson","doi":"10.1112/blms.13112","DOIUrl":"https://doi.org/10.1112/blms.13112","url":null,"abstract":"<p>We prove that the spatial Wiener–Hopf factorisation of a Lévy process or random walk without killing is unique.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 9","pages":"2951-2968"},"PeriodicalIF":0.8,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信