{"title":"Lipschitz-free spaces over strongly countable-dimensional spaces and approximation properties","authors":"Filip Talimdjioski","doi":"10.1112/blms.13200","DOIUrl":"https://doi.org/10.1112/blms.13200","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> be a compact, metrisable and strongly countable-dimensional topological space. Let <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mi>T</mi>\u0000 </msup>\u0000 <annotation>$mathcal {M}^T$</annotation>\u0000 </semantics></math> be the set of all metrics <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> compatible with its topology, and equip <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mi>T</mi>\u0000 </msup>\u0000 <annotation>$mathcal {M}^T$</annotation>\u0000 </semantics></math> with the topology of uniform convergence, where the metrics are regarded as functions on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$T^2$</annotation>\u0000 </semantics></math>. We prove that the set <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>A</mi>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 <mo>,</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$mathcal {A}^{T,1}$</annotation>\u0000 </semantics></math> of metrics <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mi>T</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$din mathcal {M}^T$</annotation>\u0000 </semantics></math> for which the Lipschitz-free space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <mo>(</mo>\u0000 <mi>T</mi>\u0000 <mo>,</mo>\u0000 <mi>d</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {F}(T,d)$</annotation>\u0000 </semantics></math> has the metric approximation property is residual in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mi>T</mi>\u0000 </msup>\u0000 <annotation>$mathcal {M}^T$</annotation>\u0000 ","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"359-376"},"PeriodicalIF":0.8,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Continuous actions on primitive ideal spaces lift to \u0000 \u0000 \u0000 C\u0000 *\u0000 \u0000 $mathrm{C}^ast$\u0000 -actions","authors":"Matteo Pagliero","doi":"10.1112/blms.13203","DOIUrl":"https://doi.org/10.1112/blms.13203","url":null,"abstract":"<p>We prove that for any second-countable, locally compact group <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>, any continuous <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>-action on the primitive ideal space of a separable, nuclear <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mo>*</mo>\u0000 </msup>\u0000 <annotation>$mathrm{C}^ast$</annotation>\u0000 </semantics></math>-algebra <span></span><math>\u0000 <semantics>\u0000 <mi>B</mi>\u0000 <annotation>$B$</annotation>\u0000 </semantics></math> such that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>B</mi>\u0000 <mo>≅</mo>\u0000 <mi>B</mi>\u0000 <mo>⊗</mo>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>⊗</mo>\u0000 <mi>K</mi>\u0000 </mrow>\u0000 <annotation>$B cong Botimes mathcal {O}_2otimes mathcal {K}$</annotation>\u0000 </semantics></math> is induced by an action on <span></span><math>\u0000 <semantics>\u0000 <mi>B</mi>\u0000 <annotation>$B$</annotation>\u0000 </semantics></math>. As a direct consequence, we establish that every continuous action on the primitive ideal space of a separable, nuclear <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mo>*</mo>\u0000 </msup>\u0000 <annotation>$mathrm{C}^ast$</annotation>\u0000 </semantics></math>-algebra is induced by an action on a <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mo>*</mo>\u0000 </msup>\u0000 <annotation>$mathrm{C}^ast$</annotation>\u0000 </semantics></math>-algebra with the same primitive ideal space. Moreover, we discuss an application to the classification of equivariantly <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$mathcal {O}_2$</annotation>\u0000 </semantics></math>-stable actions.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 2","pages":"404-425"},"PeriodicalIF":0.8,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143362538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}