Inhomogeneous Khintchine–Groshev theorem without monotonicity

IF 0.9 3区 数学 Q2 MATHEMATICS
Seongmin Kim
{"title":"Inhomogeneous Khintchine–Groshev theorem without monotonicity","authors":"Seongmin Kim","doi":"10.1112/blms.70114","DOIUrl":null,"url":null,"abstract":"<p>The Khintchine–Groshev theorem in Diophantine approximation theory says that there is a dichotomy of the Lebesgue measure of sets of <span></span><math>\n <semantics>\n <mi>ψ</mi>\n <annotation>$\\psi$</annotation>\n </semantics></math>-approximable numbers, given a monotonic function <span></span><math>\n <semantics>\n <mi>ψ</mi>\n <annotation>$\\psi$</annotation>\n </semantics></math>. Allen and Ramírez removed the monotonicity condition from the inhomogeneous Khintchine–Groshev theorem for cases with <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$nm\\geqslant 3$</annotation>\n </semantics></math> and conjectured that it also holds for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mi>m</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$nm=2$</annotation>\n </semantics></math>. In this paper, we prove this conjecture in the case of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n,m)=(2,1)$</annotation>\n </semantics></math>. We also prove it for the case of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n,m)=(1,2)$</annotation>\n </semantics></math> with a rational inhomogeneous parameter.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2639-2657"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70114","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70114","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Khintchine–Groshev theorem in Diophantine approximation theory says that there is a dichotomy of the Lebesgue measure of sets of ψ $\psi$ -approximable numbers, given a monotonic function ψ $\psi$ . Allen and Ramírez removed the monotonicity condition from the inhomogeneous Khintchine–Groshev theorem for cases with n m 3 $nm\geqslant 3$ and conjectured that it also holds for n m = 2 $nm=2$ . In this paper, we prove this conjecture in the case of ( n , m ) = ( 2 , 1 ) $(n,m)=(2,1)$ . We also prove it for the case of ( n , m ) = ( 1 , 2 ) $(n,m)=(1,2)$ with a rational inhomogeneous parameter.

Abstract Image

Abstract Image

无单调性非齐次Khintchine-Groshev定理
丢芬图近似理论中的Khintchine-Groshev定理说,给定一个单调函数ψ $\psi$, ψ $\psi$ -可近似数集合的勒贝格测度有一个二分法。Allen和Ramírez在n m大于或等于3 $nm\geqslant 3$的情况下从非齐次Khintchine-Groshev定理中去除单调性条件,并推测它也适用于n m = 2$nm=2$。本文在(n, m) = (2,1) $(n,m)=(2,1)$的情况下证明了这个猜想。对于(n, m) = (1,2) $(n,m)=(1,2)$具有有理非齐次参数的情况,我们也证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信