{"title":"Corrigendum: Graph bundles and Ricci-flatness","authors":"Wenbo Li, Shiping Liu","doi":"10.1112/blms.70111","DOIUrl":"https://doi.org/10.1112/blms.70111","url":null,"abstract":"<p>This note is a corrigendum to the authors' paper “Graph bundles and Ricci–flatness, Bulletin of the London Mathematical Society, 56(2), pp. 523–535, 2024”.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1921-1922"},"PeriodicalIF":0.8,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144245168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the stack of 0-dimensional coherent sheaves: Motivic aspects","authors":"Barbara Fantechi, Andrea T. Ricolfi","doi":"10.1112/blms.70096","DOIUrl":"https://doi.org/10.1112/blms.70096","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> be a variety. In this survey, we study (decompositions of) the motivic class, in the Grothendieck ring of stacks, of the stack <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <mi>o</mi>\u0000 <msup>\u0000 <mi>h</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {C}hspace{-2.5pt}{o}hspace{-1.99997pt}{h}^n(X)$</annotation>\u0000 </semantics></math> of 0-dimensional coherent sheaves of length <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math>. To do so, we review the construction of the support map <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <mi>o</mi>\u0000 <msup>\u0000 <mi>h</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mo>Sym</mo>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {C}hspace{-2.5pt}{o}hspace{-1.99997pt}{h}^n(X) rightarrow operatorname{Sym}^n(X)$</annotation>\u0000 </semantics></math> to the symmetric product and we prove that, for any closed point <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>∈</mo>\u0000 <mi>X</mi>\u0000 </mrow>\u0000 <annotation>$p in X$</annotation>\u0000 </semantics></math>, the motive of the punctual stack <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <mi>o</mi>\u0000 <msup>\u0000 <mi>h</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 ","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1607-1649"},"PeriodicalIF":0.8,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70096","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144245008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal power-weighted Birman–Hardy–Rellich-type inequalities on finite intervals and annuli","authors":"Fritz Gesztesy, Michael M. H. Pang","doi":"10.1112/blms.70063","DOIUrl":"https://doi.org/10.1112/blms.70063","url":null,"abstract":"<p>We derive an optimal power-weighted Hardy-type inequality in integral form on finite intervals and subsequently prove the analogous inequality in differential form. We note that the optimal constant of the latter inequality differs from the former. Moreover, by iterating these inequalities we derive the sequence of power-weighted Birman–Hardy–Rellich-type inequalities in integral form on finite intervals and then also prove the analogous sequence of inequalities in differential form. We use the one-dimensional Hardy-type result in differential form to derive an optimal multi-dimensional version of the power-weighted Hardy inequality in differential form on annuli (i.e., spherical shell domains), and once more employ an iteration procedure to derive the Birman–Hardy–Rellich-type sequence of power-weighted higher order Hardy-type inequalities for annuli. In the limit as the annulus approaches <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>${mathbb {R}}^n$</annotation>\u0000 </semantics></math>{0}, we recover well-known prior results on Rellich-type inequalities on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>${mathbb {R}}^n$</annotation>\u0000 </semantics></math>{0}.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1819-1840"},"PeriodicalIF":0.8,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preservation for generation along the structure morphism of coherent algebras over a scheme","authors":"Anirban Bhaduri, Souvik Dey, Pat Lank","doi":"10.1112/blms.70066","DOIUrl":"https://doi.org/10.1112/blms.70066","url":null,"abstract":"<p>This work demonstrates classical generation is preserved by the derived pushforward along the structure morphism of a noncommutative coherent algebra to its underlying scheme. Additionally, we establish that the Krull dimension of a variety over a field is a lower bound for the Rouquier dimension of the bounded derived category associated with a noncommutative coherent algebra on it. This is an extension of a classical result of Rouquier to the noncommutative context.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1885-1896"},"PeriodicalIF":0.8,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Corrigendum to “On the existence of critical compatible metrics on contact 3-manifolds,”","authors":"Y. Mitsumatsu, D. Peralta-Salas, R. Slobodeanu","doi":"10.1112/blms.70067","DOIUrl":"https://doi.org/10.1112/blms.70067","url":null,"abstract":"<p>A gap in the proof of the main result (Theorem 1.3) in our paper [Bull. Lond. Math. Soc. <b>57</b> (2025), 79–95] is identified and fixed. The gap is related to possible non-orientability of the line bundles defined by eigendirections of the (1,1)-tensor <span></span><math>\u0000 <semantics>\u0000 <mi>h</mi>\u0000 <annotation>$h$</annotation>\u0000 </semantics></math>. </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1918-1920"},"PeriodicalIF":0.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}