Bulletin of the London Mathematical Society最新文献

筛选
英文 中文
Corrigendum: Graph bundles and Ricci-flatness 勘误:图束和里奇平坦度
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-05-29 DOI: 10.1112/blms.70111
Wenbo Li, Shiping Liu
{"title":"Corrigendum: Graph bundles and Ricci-flatness","authors":"Wenbo Li,&nbsp;Shiping Liu","doi":"10.1112/blms.70111","DOIUrl":"https://doi.org/10.1112/blms.70111","url":null,"abstract":"<p>This note is a corrigendum to the authors' paper “Graph bundles and Ricci–flatness, Bulletin of the London Mathematical Society, 56(2), pp. 523–535, 2024”.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1921-1922"},"PeriodicalIF":0.8,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144245168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the stack of 0-dimensional coherent sheaves: Motivic aspects 关于0维连贯捆的堆叠:动机方面
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-05-19 DOI: 10.1112/blms.70096
Barbara Fantechi, Andrea T. Ricolfi
{"title":"On the stack of 0-dimensional coherent sheaves: Motivic aspects","authors":"Barbara Fantechi,&nbsp;Andrea T. Ricolfi","doi":"10.1112/blms.70096","DOIUrl":"https://doi.org/10.1112/blms.70096","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;annotation&gt;$X$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a variety. In this survey, we study (decompositions of) the motivic class, in the Grothendieck ring of stacks, of the stack &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mi&gt;o&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;h&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {C}hspace{-2.5pt}{o}hspace{-1.99997pt}{h}^n(X)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of 0-dimensional coherent sheaves of length &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;annotation&gt;$X$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. To do so, we review the construction of the support map &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mi&gt;o&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;h&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mo&gt;Sym&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {C}hspace{-2.5pt}{o}hspace{-1.99997pt}{h}^n(X) rightarrow operatorname{Sym}^n(X)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; to the symmetric product and we prove that, for any closed point &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$p in X$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, the motive of the punctual stack &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mi&gt;o&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;h&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 ","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1607-1649"},"PeriodicalIF":0.8,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70096","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144245008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal power-weighted Birman–Hardy–Rellich-type inequalities on finite intervals and annuli 有限区间和环空上最优幂加权birman - hardy - rellich型不等式
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-04-12 DOI: 10.1112/blms.70063
Fritz Gesztesy, Michael M. H. Pang
{"title":"Optimal power-weighted Birman–Hardy–Rellich-type inequalities on finite intervals and annuli","authors":"Fritz Gesztesy,&nbsp;Michael M. H. Pang","doi":"10.1112/blms.70063","DOIUrl":"https://doi.org/10.1112/blms.70063","url":null,"abstract":"<p>We derive an optimal power-weighted Hardy-type inequality in integral form on finite intervals and subsequently prove the analogous inequality in differential form. We note that the optimal constant of the latter inequality differs from the former. Moreover, by iterating these inequalities we derive the sequence of power-weighted Birman–Hardy–Rellich-type inequalities in integral form on finite intervals and then also prove the analogous sequence of inequalities in differential form. We use the one-dimensional Hardy-type result in differential form to derive an optimal multi-dimensional version of the power-weighted Hardy inequality in differential form on annuli (i.e., spherical shell domains), and once more employ an iteration procedure to derive the Birman–Hardy–Rellich-type sequence of power-weighted higher order Hardy-type inequalities for annuli. In the limit as the annulus approaches <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>${mathbb {R}}^n$</annotation>\u0000 </semantics></math>{0}, we recover well-known prior results on Rellich-type inequalities on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>${mathbb {R}}^n$</annotation>\u0000 </semantics></math>{0}.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1819-1840"},"PeriodicalIF":0.8,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preservation for generation along the structure morphism of coherent algebras over a scheme 一个方案上相干代数沿结构模射生成的保存
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-04-10 DOI: 10.1112/blms.70066
Anirban Bhaduri, Souvik Dey, Pat Lank
{"title":"Preservation for generation along the structure morphism of coherent algebras over a scheme","authors":"Anirban Bhaduri,&nbsp;Souvik Dey,&nbsp;Pat Lank","doi":"10.1112/blms.70066","DOIUrl":"https://doi.org/10.1112/blms.70066","url":null,"abstract":"<p>This work demonstrates classical generation is preserved by the derived pushforward along the structure morphism of a noncommutative coherent algebra to its underlying scheme. Additionally, we establish that the Krull dimension of a variety over a field is a lower bound for the Rouquier dimension of the bounded derived category associated with a noncommutative coherent algebra on it. This is an extension of a classical result of Rouquier to the noncommutative context.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1885-1896"},"PeriodicalIF":0.8,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “On the existence of critical compatible metrics on contact 3-manifolds,” “关于接触3流形上临界兼容度量的存在性”的勘误表
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-04-09 DOI: 10.1112/blms.70067
Y. Mitsumatsu, D. Peralta-Salas, R. Slobodeanu
{"title":"Corrigendum to “On the existence of critical compatible metrics on contact 3-manifolds,”","authors":"Y. Mitsumatsu,&nbsp;D. Peralta-Salas,&nbsp;R. Slobodeanu","doi":"10.1112/blms.70067","DOIUrl":"https://doi.org/10.1112/blms.70067","url":null,"abstract":"<p>A gap in the proof of the main result (Theorem 1.3) in our paper [Bull. Lond. Math. Soc. <b>57</b> (2025), 79–95] is identified and fixed. The gap is related to possible non-orientability of the line bundles defined by eigendirections of the (1,1)-tensor <span></span><math>\u0000 <semantics>\u0000 <mi>h</mi>\u0000 <annotation>$h$</annotation>\u0000 </semantics></math>. </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1918-1920"},"PeriodicalIF":0.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric invariant theory for G a ⋊ G m $mathbb {G}_artimes mathbb {G}_m$ G - a - G - m$ mathbb {G}_ar乘以mathbb {G}_m$的几何不变量理论
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-04-08 DOI: 10.1112/blms.70065
Yikun Qiao
{"title":"Geometric invariant theory for \u0000 \u0000 \u0000 \u0000 G\u0000 a\u0000 \u0000 ⋊\u0000 \u0000 G\u0000 m\u0000 \u0000 \u0000 $mathbb {G}_artimes mathbb {G}_m$","authors":"Yikun Qiao","doi":"10.1112/blms.70065","DOIUrl":"https://doi.org/10.1112/blms.70065","url":null,"abstract":"<p>We study geometric invariant theory for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi>a</mi>\u0000 </msub>\u0000 <msub>\u0000 <mo>⋊</mo>\u0000 <mi>d</mi>\u0000 </msub>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi>m</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$mathbb {G}_artimes _dmathbb {G}_m$</annotation>\u0000 </semantics></math> over characteristic zero. For a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi>a</mi>\u0000 </msub>\u0000 <msub>\u0000 <mo>⋊</mo>\u0000 <mi>d</mi>\u0000 </msub>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi>m</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$mathbb {G}_artimes _dmathbb {G}_m$</annotation>\u0000 </semantics></math>-action on a variety <span></span><math>\u0000 <semantics>\u0000 <mi>C</mi>\u0000 <annotation>$C$</annotation>\u0000 </semantics></math> in suitable case, we provide an equivariant birational modification <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>:</mo>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <mi>C</mi>\u0000 </mrow>\u0000 <annotation>$p:C^{prime }rightarrow C$</annotation>\u0000 </semantics></math> such that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <mo>→</mo>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mo>′</mo>\u0000 </msup>\u0000 <mo>/</mo>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi>a</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$C^{prime }rightarrow C^{prime }/mathbb {G}_a$</annotation>\u0000 </semantics></math> is a principal bundle. The situation covers quotients of unstable strata of any linear <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>SL</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$mathrm{SL}_2$</annotation>\u0000 </semantics></math>-action.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1856-1884"},"PeriodicalIF":0.8,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smallest totient in a residue class 剩余类中的最小对象
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-04-08 DOI: 10.1112/blms.70069
Abhishek Jha
{"title":"Smallest totient in a residue class","authors":"Abhishek Jha","doi":"10.1112/blms.70069","DOIUrl":"https://doi.org/10.1112/blms.70069","url":null,"abstract":"<p>We obtain a totient analogue for Linnik's theorem in arithmetic progressions. Specifically, for any coprime pair of positive integers <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>,</mo>\u0000 <mi>a</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(m,a)$</annotation>\u0000 </semantics></math> such that <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math> is odd, there exists <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩽</mo>\u0000 <msup>\u0000 <mi>m</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>+</mo>\u0000 <mi>o</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$nleqslant m^{2+o(1)}$</annotation>\u0000 </semantics></math> such that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>φ</mi>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 <mo>≡</mo>\u0000 <mi>a</mi>\u0000 <mspace></mspace>\u0000 <mo>(</mo>\u0000 <mi>mod</mi>\u0000 <mspace></mspace>\u0000 <mi>m</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$varphi (n)equiv a (mathrm{mod} m)$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1908-1917"},"PeriodicalIF":0.8,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70069","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flat cotorsion modules are exchange 平面扭模是交换的
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-04-07 DOI: 10.1112/blms.70068
Manuel Cortés-Izurdiaga, Pedro A. Guil Asensio, Ashish K. Srivastava
{"title":"Flat cotorsion modules are exchange","authors":"Manuel Cortés-Izurdiaga,&nbsp;Pedro A. Guil Asensio,&nbsp;Ashish K. Srivastava","doi":"10.1112/blms.70068","DOIUrl":"https://doi.org/10.1112/blms.70068","url":null,"abstract":"<p>It is known that flat cotorsion modules satisfy the finite exchange property. In this paper, we provide a general criterion that, in particular, demonstrates that flat cotorsion modules indeed satisfy the (full) exchange property.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1897-1907"},"PeriodicalIF":0.8,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The small-scale limit of magnitude and the one-point property 震级的小尺度极限和一点性质
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-04-05 DOI: 10.1112/blms.70064
Emily Roff, Masahiko Yoshinaga
{"title":"The small-scale limit of magnitude and the one-point property","authors":"Emily Roff,&nbsp;Masahiko Yoshinaga","doi":"10.1112/blms.70064","DOIUrl":"https://doi.org/10.1112/blms.70064","url":null,"abstract":"<p>The magnitude of a metric space is a real-valued function whose parameter controls the scale of the metric. A metric space is said to have the <i>one-point property</i> if its magnitude converges to 1 as the space is scaled down to a point. Not every finite metric space has the one-point property: to date, exactly one example has been found of a finite space for which the property fails. Understanding the failure of the one-point property is of interest in clarifying the interpretation of magnitude and its stability with respect to the Gromov–Hausdorff topology. We prove that the one-point property holds generically for finite metric spaces, but that when it fails, the failure can be arbitrarily bad: the small-scale limit of magnitude can take arbitrary real values greater than 1.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1841-1855"},"PeriodicalIF":0.8,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On an Erdős similarity problem in the large 关于Erdős相似度问题在大
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-04-04 DOI: 10.1112/blms.70062
Xiang Gao, Yuveshen Mooroogen, Chi Hoi Yip
{"title":"On an Erdős similarity problem in the large","authors":"Xiang Gao,&nbsp;Yuveshen Mooroogen,&nbsp;Chi Hoi Yip","doi":"10.1112/blms.70062","DOIUrl":"https://doi.org/10.1112/blms.70062","url":null,"abstract":"&lt;p&gt;In a recent paper, Kolountzakis and Papageorgiou ask if for every &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ε&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$epsilon in (0,1]$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, there exists a set &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mo&gt;⊆&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$S subseteq mathbb {R}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; such that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mo&gt;∩&lt;/mo&gt;\u0000 &lt;mi&gt;I&lt;/mi&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;ε&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$vert S cap Ivert geqslant 1 - epsilon$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; for every interval &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;I&lt;/mi&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$I subset mathbb {R}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with unit length, but that does not contain any affine copy of a given increasing sequence of exponential growth or faster. This question is an analog of the well-known Erdős similarity problem. In this paper, we show that for each sequence of real numbers whose integer parts form a set of positive upper Banach density, one can explicitly construct such a set &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;annotation&gt;$S$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; that contains no affine copy of that sequence. Since there exist sequences of arbitrarily rapid growth that satisfy this condition, our result answers Kolountzakis and Papageorgiou's question in the affirmative. A key ingredient of our proof is a generalization of results by Amice, Kahane, and Haight from metric number theory. In addition, we construct a set &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;annotation&gt;$S$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; with the required property — but with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ε&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1801-1818"},"PeriodicalIF":0.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144244280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信