Bulletin of the London Mathematical Society最新文献

筛选
英文 中文
The covariant functoriality of graph algebras 图代数的协变函数性
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-10-28 DOI: 10.1112/blms.13125
Piotr M. Hajac, Mariusz Tobolski
{"title":"The covariant functoriality of graph algebras","authors":"Piotr M. Hajac,&nbsp;Mariusz Tobolski","doi":"10.1112/blms.13125","DOIUrl":"https://doi.org/10.1112/blms.13125","url":null,"abstract":"<p>In the standard category of directed graphs, graph morphisms map edges to edges. By allowing graph morphisms to map edges to finite paths (path homomorphisms of graphs), we obtain an ambient category in which we determine subcategories enjoying covariant functors to categories of algebras given by constructions of path algebras, Cohn path algebras, and Leavitt path algebras, respectively. Thus, we obtain new tools to unravel homomorphisms between Leavitt path algebras and between graph C*-algebras. In particular, a graph-algebraic presentation of the inclusion of the C*-algebra of a quantum real projective plane into the Toeplitz algebra allows us to determine a quantum CW-complex structure of the former. It comes as a mixed-pullback theorem where two <span></span><math>\u0000 <semantics>\u0000 <mo>∗</mo>\u0000 <annotation>$*$</annotation>\u0000 </semantics></math>-homomorphisms are covariantly induced from path homomorphisms of graphs and the remaining two are contravariantly induced by admissible inclusions of graphs. As a main result and an application of new covariant-induction tools, we prove such a mixed-pullback theorem for arbitrary graphs whose all vertex-simple loops have exits, which substantially enlarges the scope of examples coming from noncommutative topology.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3269-3288"},"PeriodicalIF":0.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a Galois property of fields generated by the torsion of an abelian variety 论无常变的扭转所产生的场的伽罗瓦性质
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-09-18 DOI: 10.1112/blms.13149
S. Checcoli, G. A. Dill
{"title":"On a Galois property of fields generated by the torsion of an abelian variety","authors":"S. Checcoli,&nbsp;G. A. Dill","doi":"10.1112/blms.13149","DOIUrl":"https://doi.org/10.1112/blms.13149","url":null,"abstract":"<p>In this article, we study a certain Galois property of subextensions of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mi>tors</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$k(A_{mathrm{tors}})$</annotation>\u0000 </semantics></math>, the minimal field of definition of all torsion points of an abelian variety <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> defined over a number field <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>. Concretely, we show that each subfield of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>A</mi>\u0000 <mi>tors</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$k(A_{mathrm{tors}})$</annotation>\u0000 </semantics></math> that is Galois over <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> (of possibly infinite degree) and whose Galois group has finite exponent is contained in an abelian extension of some finite extension of <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>. As an immediate corollary of this result and a theorem of Bombieri and Zannier, we deduce that each such field has the Northcott property, that is, does not contain any infinite set of algebraic numbers of bounded height.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3530-3541"},"PeriodicalIF":0.8,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-ratio degrees and triangulations 交叉比度和三角测量
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-09-17 DOI: 10.1112/blms.13148
Rob Silversmith
{"title":"Cross-ratio degrees and triangulations","authors":"Rob Silversmith","doi":"10.1112/blms.13148","DOIUrl":"https://doi.org/10.1112/blms.13148","url":null,"abstract":"<p>The cross-ratio degree problem counts configurations of <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> points on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$mathbb {P}^1$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$n-3$</annotation>\u0000 </semantics></math> prescribed cross-ratios. Cross-ratio degrees arise in many corners of combinatorics and geometry, but their structure is not well-understood in general. Interestingly, examining various special cases of the problem can yield combinatorial structures that are both diverse and rich. In this paper, we prove a simple closed formula for a class of cross-ratio degrees indexed by triangulations of an <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-gon; these degrees are connected to the geometry of the real locus of <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$M_{0,n}$</annotation>\u0000 </semantics></math>, and to positive geometry.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3518-3529"},"PeriodicalIF":0.8,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on limiting Calderon–Zygmund theory for transformed n $n$ -Laplace systems in divergence form 关于发散形式变换 n $n$ - 拉普拉斯系统的极限卡尔德龙-齐格蒙德理论的说明
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-09-16 DOI: 10.1112/blms.13147
Dorian Martino, Armin Schikorra
{"title":"A note on limiting Calderon–Zygmund theory for transformed \u0000 \u0000 n\u0000 $n$\u0000 -Laplace systems in divergence form","authors":"Dorian Martino,&nbsp;Armin Schikorra","doi":"10.1112/blms.13147","DOIUrl":"https://doi.org/10.1112/blms.13147","url":null,"abstract":"<p>We consider rotated <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-Laplace systems on the unit ball <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>⊂</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$B_1 subset mathbb {R}^n$</annotation>\u0000 </semantics></math> of the form\u0000\u0000 </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3502-3517"},"PeriodicalIF":0.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on the PDE approach to the L ∞ $L^infty$ estimates for complex Hessian equations on transverse Kähler manifolds 横向 Kähler 流形上复杂 Hessian 方程 L ∞ $L^infty$ 估计的 PDE 方法说明
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-09-16 DOI: 10.1112/blms.13150
P. Sivaram
{"title":"A note on the PDE approach to the \u0000 \u0000 \u0000 L\u0000 ∞\u0000 \u0000 $L^infty$\u0000 estimates for complex Hessian equations on transverse Kähler manifolds","authors":"P. Sivaram","doi":"10.1112/blms.13150","DOIUrl":"https://doi.org/10.1112/blms.13150","url":null,"abstract":"<p>In this note, the partial differential equation (PDE) approach of Guo–Phong–Tong and Guo–Phong–Tong–Wang adapted to prove an <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$L^infty$</annotation>\u0000 </semantics></math> estimate for transverse complex Monge–Ampère equations on homologically orientable transverse Kähler manifolds. As an application, a purely PDE-based proof of the regularity of Calabi–Yau cone metrics on <span></span><math>\u0000 <semantics>\u0000 <mi>Q</mi>\u0000 <annotation>$mathbb {Q}$</annotation>\u0000 </semantics></math>-Gorenstein <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$mathbb {T}$</annotation>\u0000 </semantics></math>-varieties is obtained.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3542-3564"},"PeriodicalIF":0.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Selberg identity for the Shimura lift 志村升降机的塞尔伯格特性
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-09-16 DOI: 10.1112/blms.13151
Hui Xue
{"title":"A Selberg identity for the Shimura lift","authors":"Hui Xue","doi":"10.1112/blms.13151","DOIUrl":"https://doi.org/10.1112/blms.13151","url":null,"abstract":"<p>We first prove a Selberg-type identity for the Shimura lift of the Rankin–Cohen bracket of a normalized Hecke eigenform and the theta function. We then discuss its relationship with the nonvanishing of central values of <span></span><math>\u0000 <semantics>\u0000 <mi>L</mi>\u0000 <annotation>$L$</annotation>\u0000 </semantics></math>-functions associated to Hecke eigenforms.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3565-3579"},"PeriodicalIF":0.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13151","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steenbrink-type vanishing for surfaces in positive characteristic 正特征曲面的斯登布林克型消失
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-09-12 DOI: 10.1112/blms.13146
Tatsuro Kawakami
{"title":"Steenbrink-type vanishing for surfaces in positive characteristic","authors":"Tatsuro Kawakami","doi":"10.1112/blms.13146","DOIUrl":"https://doi.org/10.1112/blms.13146","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>,</mo>\u0000 <mi>B</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(X,B)$</annotation>\u0000 </semantics></math> be a pair of a normal surface over a perfect field of characteristic <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$p&amp;gt;0$</annotation>\u0000 </semantics></math> and an effective <span></span><math>\u0000 <semantics>\u0000 <mi>Q</mi>\u0000 <annotation>$mathbb {Q}$</annotation>\u0000 </semantics></math>-divisor <span></span><math>\u0000 <semantics>\u0000 <mi>B</mi>\u0000 <annotation>$B$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math>. We prove that Steenbrink-type vanishing holds for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>,</mo>\u0000 <mi>B</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(X,B)$</annotation>\u0000 </semantics></math> if it is log canonical and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>5</mn>\u0000 </mrow>\u0000 <annotation>$p&amp;gt;5$</annotation>\u0000 </semantics></math>, or it is <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-pure. We also show that rational surface singularities satisfying the vanishing are <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>-injective.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3484-3501"},"PeriodicalIF":0.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatic symmetric functions and polynomial invariants of trees 树的色度对称函数和多项式不变式
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-09-10 DOI: 10.1112/blms.13144
José Aliste-Prieto, Jeremy L. Martin, Jennifer D. Wagner, José Zamora
{"title":"Chromatic symmetric functions and polynomial invariants of trees","authors":"José Aliste-Prieto,&nbsp;Jeremy L. Martin,&nbsp;Jennifer D. Wagner,&nbsp;José Zamora","doi":"10.1112/blms.13144","DOIUrl":"https://doi.org/10.1112/blms.13144","url":null,"abstract":"<p>Stanley asked whether a tree is determined up to isomorphism by its chromatic symmetric function. We approach Stanley's problem by studying the relationship between the chromatic symmetric function and other invariants. First, we prove Crew's conjecture that the chromatic symmetric function of a tree determines its generalized degree sequence, which enumerates vertex subsets by cardinality and the numbers of internal and external edges. Second, we prove that the restriction of the generalized degree sequence to subtrees contains exactly the same information as the subtree polynomial, which enumerates subtrees by cardinality and number of leaves. Third, we construct arbitrarily large families of trees sharing the same subtree polynomial, proving and generalizing a conjecture of Eisenstat and Gordon.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3452-3476"},"PeriodicalIF":0.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclic-Schottky strata of Schottky space 肖特基空间的循环-肖特基层
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-09-10 DOI: 10.1112/blms.13141
Rubén A. Hidalgo, Milagros Izquierdo
{"title":"Cyclic-Schottky strata of Schottky space","authors":"Rubén A. Hidalgo,&nbsp;Milagros Izquierdo","doi":"10.1112/blms.13141","DOIUrl":"https://doi.org/10.1112/blms.13141","url":null,"abstract":"&lt;p&gt;Schottky space &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;${mathcal {S}}_{g}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mo&gt;⩾&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$g geqslant 2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is an integer, is a connected complex orbifold of dimension &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$3(g-1)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;; it provides a parametrization of the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;PSL&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${rm PSL}_{2}({mathbb {C}})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-conjugacy classes of Schottky groups &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;annotation&gt;$Gamma$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; of rank &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;annotation&gt;$g$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The branch locus &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${mathcal {B}}_{g} subset {mathcal {S}}_{g}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, consisting of those conjugacy classes of Schottky groups being a finite index proper normal subgroup of some Kleinian group, is known to be connected. If &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 &lt;mi&gt;Γ&lt;/mi&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;g&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3412-3427"},"PeriodicalIF":0.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13141","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On finite generation in magnitude (co)homology and its torsion 论大小(共)同源中的有限生成及其扭转
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2024-09-10 DOI: 10.1112/blms.13143
Luigi Caputi, Carlo Collari
{"title":"On finite generation in magnitude (co)homology and its torsion","authors":"Luigi Caputi,&nbsp;Carlo Collari","doi":"10.1112/blms.13143","DOIUrl":"https://doi.org/10.1112/blms.13143","url":null,"abstract":"<p>The aim of this paper is to apply the framework developed by Sam and Snowden to study structural properties of graph homologies, in the spirit of Ramos, Miyata and Proudfoot. Our main results concern the magnitude homology of graphs introduced by Hepworth and Willerton, and we prove that it is a finitely generated functor (on graphs of bounded genus). More precisely, for graphs of bounded genus, we prove that magnitude cohomology, in each homological degree, has rank which grows at most polynomially in the number of vertices, and that its torsion is bounded. As a consequence, we obtain analogous results for path homology of (undirected) graphs.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 11","pages":"3434-3451"},"PeriodicalIF":0.8,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13143","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信