Bulletin of the London Mathematical Society最新文献

筛选
英文 中文
More unit distances in arbitrary norms 任意范数中更多的单位距离
IF 0.9 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-07-29 DOI: 10.1112/blms.70133
Josef Greilhuber, Carl Schildkraut, Jonathan Tidor
{"title":"More unit distances in arbitrary norms","authors":"Josef Greilhuber, Carl Schildkraut, Jonathan Tidor","doi":"10.1112/blms.70133","DOIUrl":"10.1112/blms.70133","url":null,"abstract":"<p>For <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$dgeqslant 2$</annotation>\u0000 </semantics></math> and any norm on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^d$</annotation>\u0000 </semantics></math>, we prove that there exists a set of <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> points that spans at least <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mstyle>\u0000 <mfrac>\u0000 <mi>d</mi>\u0000 <mn>2</mn>\u0000 </mfrac>\u0000 </mstyle>\u0000 <mo>−</mo>\u0000 <mi>o</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mi>n</mi>\u0000 <msub>\u0000 <mi>log</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation>$(tfrac{d}{2}-o(1))nlog _2n$</annotation>\u0000 </semantics></math> unit distances under this norm for every <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>. This matches the upper bound recently proved by Alon, Bucić, and Sauermann for typical norms (i.e., norms lying in a comeagre set). We also show that for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$dgeqslant 3$</annotation>\u0000 </semantics></math> and a typical norm on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^d$</annotation>\u0000 </semantics></math>, the unit distance graph of this norm contains a copy of <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>K</mi>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>,</mo>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$K_{d,m}$</annotation>\u0000 </semantics></math> for all <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annot","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2885-2901"},"PeriodicalIF":0.9,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erdős space in Julia sets Erdős Julia集合中的空间
IF 0.9 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-07-15 DOI: 10.1112/blms.70131
David S. Lipham
{"title":"Erdős space in Julia sets","authors":"David S. Lipham","doi":"10.1112/blms.70131","DOIUrl":"10.1112/blms.70131","url":null,"abstract":"<p>We prove that the rational Hilbert space, known as the <i>Erdős space</i> <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$mathfrak {E}$</annotation>\u0000 </semantics></math>, surfaces in complex dynamics via iteration of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>e</mi>\u0000 <mi>z</mi>\u0000 </msup>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$e^z-1$</annotation>\u0000 </semantics></math>. More precisely, <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$mathfrak {E}$</annotation>\u0000 </semantics></math> is topologically equivalent to the set of endpoints of the Julia set <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>J</mi>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>e</mi>\u0000 <mi>z</mi>\u0000 </msup>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$J(e^z-1)$</annotation>\u0000 </semantics></math> whose orbits tend to infinity in the imaginary direction.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2854-2864"},"PeriodicalIF":0.9,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145021912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational normal curves in weighted projective space 加权射影空间中的有理正态曲线
IF 0.9 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-07-02 DOI: 10.1112/blms.70129
Caitlin M. Davis, Aleksandra Sobieska
{"title":"Rational normal curves in weighted projective space","authors":"Caitlin M. Davis,&nbsp;Aleksandra Sobieska","doi":"10.1112/blms.70129","DOIUrl":"10.1112/blms.70129","url":null,"abstract":"<p>This article aims to extend classical homological results about the rational normal curves to analogues in weighted projective spaces. Results include determinantality and nonstandard versions of quadratic generation and the Koszul property.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2816-2837"},"PeriodicalIF":0.9,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145021750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Artin vanishing theorem for Stein spaces 关于Stein空间的Artin消失定理
IF 0.9 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-07-01 DOI: 10.1112/blms.70124
Olivier Benoist
{"title":"On the Artin vanishing theorem for Stein spaces","authors":"Olivier Benoist","doi":"10.1112/blms.70124","DOIUrl":"10.1112/blms.70124","url":null,"abstract":"<p>Artin vanishing theorems for Stein spaces refer to the vanishing of some of their (co)homology groups in degrees higher than the dimension. We obtain new positive and negative results concerning Artin vanishing for the cohomology of a Stein space relative to a Runge open subset. We also prove an Artin vanishing theorem for the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Gal</mi>\u0000 <mo>(</mo>\u0000 <mi>C</mi>\u0000 <mo>/</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathrm{Gal}(mathbb {C}/mathbb {R})$</annotation>\u0000 </semantics></math>-equivariant cohomology of a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Gal</mi>\u0000 <mo>(</mo>\u0000 <mi>C</mi>\u0000 <mo>/</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathrm{Gal}(mathbb {C}/mathbb {R})$</annotation>\u0000 </semantics></math>-equivariant Stein space relative to the fixed locus.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2757-2769"},"PeriodicalIF":0.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145021752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An infinite clique of high-filling rays in the plane minus a Cantor set 平面上的高填充射线的无限团减去康托集合
IF 0.9 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-06-26 DOI: 10.1112/blms.70126
Juliette Bavard
{"title":"An infinite clique of high-filling rays in the plane minus a Cantor set","authors":"Juliette Bavard","doi":"10.1112/blms.70126","DOIUrl":"10.1112/blms.70126","url":null,"abstract":"<p>The study of the mapping class group of the plane minus a Cantor set uses a graph of loops, which is an analogous of the curve graph in the study of mapping class groups of compact surfaces. The Gromov boundary of this loop graph can be described in terms of “cliques of high-filling rays”: high-filling rays are simple geodesics of the surface which are complicated enough to be infinitely far away from any loop in the graph. Moreover, these rays are arranged in cliques: any two high-filling rays which are both disjoint from a third one are necessarily mutually disjoint. Every such clique is a point of the Gromov boundary of the loop graph. Some examples of cliques with any finite number of high-filling rays are already known.</p><p>In this paper, we construct an infinite clique of high-filling rays.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2789-2798"},"PeriodicalIF":0.9,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the universal pairing for 2-complexes 关于2-配合物的普遍配对
IF 0.9 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-06-26 DOI: 10.1112/blms.70130
Mikhail Khovanov, Vyacheslav Krushkal, John Nicholson
{"title":"On the universal pairing for 2-complexes","authors":"Mikhail Khovanov,&nbsp;Vyacheslav Krushkal,&nbsp;John Nicholson","doi":"10.1112/blms.70130","DOIUrl":"10.1112/blms.70130","url":null,"abstract":"<p>The universal pairing for manifolds was defined and shown to lack positivity in dimension 4 in [Freedman, Kitaev, Nayak, Slingerland, Walker, and Wang, J. Geom. Topol. <b>9</b> (2005), 2303–2317]. We prove an analogous result for 2-complexes, and show that the universal pairing does not detect the difference between simple homotopy equivalence and 3-deformations. The question of whether these two equivalence relations are different for 2-complexes is the subject of the Andrews–Curtis conjecture. We also discuss the universal pairing for higher dimensional complexes and show that it is not positive.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2838-2853"},"PeriodicalIF":0.9,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum: Symplectic involutions of K 3 [ n ] $K3^{[n]}$ type and Kummer n type manifolds 订正:K3 [n] $K3^{[n]}$型和Kummer n型流形的辛对合
IF 0.9 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-06-26 DOI: 10.1112/blms.70128
Ljudmila Kamenova, Giovanni Mongardi, Alexei Oblomkov
{"title":"Erratum: Symplectic involutions of \u0000 \u0000 \u0000 K\u0000 \u0000 3\u0000 \u0000 [\u0000 n\u0000 ]\u0000 \u0000 \u0000 \u0000 $K3^{[n]}$\u0000 type and Kummer n type manifolds","authors":"Ljudmila Kamenova,&nbsp;Giovanni Mongardi,&nbsp;Alexei Oblomkov","doi":"10.1112/blms.70128","DOIUrl":"10.1112/blms.70128","url":null,"abstract":"<p>In this note, we present a corrected formula for the enumeration of connected components of the locus fixed by a symplectic involution inside hyperkähler manifolds of types <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>K</mi>\u0000 <msup>\u0000 <mn>3</mn>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mi>n</mi>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$K3^{[n]}$</annotation>\u0000 </semantics></math> and generalized Kummer. We also provide further precisions concerning the involutions considered in the Kummer case.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"2235-2237"},"PeriodicalIF":0.9,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70128","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144681562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generators of top cohomology 上上同调的生成
IF 0.9 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-06-24 DOI: 10.1112/blms.70132
Manoj Kummini, Mohit Upmanyu
{"title":"Generators of top cohomology","authors":"Manoj Kummini,&nbsp;Mohit Upmanyu","doi":"10.1112/blms.70132","DOIUrl":"10.1112/blms.70132","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;annotation&gt;$R$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a commutative Noetherian ring and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;⟶&lt;/mo&gt;\u0000 &lt;mo&gt;Spec&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$f: X longrightarrow operatorname{Spec}R$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; a proper smooth morphism, of relative dimension &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. From Hartshorne, &lt;i&gt;Residues and Duality&lt;/i&gt;, Springer, 1966, one knows that the trace map &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;Tr&lt;/mo&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mo&gt;H&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;⟶&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$operatorname{Tr}_f: operatorname{H}^n(X, omega _{X/R}) longrightarrow R$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is an isomorphism when &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;f&lt;/mi&gt;\u0000 &lt;annotation&gt;$f$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; has geometrically connected fibres. We construct an exact sequence that generates &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mo&gt;Ext&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mo&gt;H&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 ","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2865-2884"},"PeriodicalIF":0.9,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cohomology of type B $B$ real permutohedral varieties B$实复面体型变异的上同性
IF 0.9 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-06-24 DOI: 10.1112/blms.70125
Younghan Yoon
{"title":"Cohomology of type \u0000 \u0000 B\u0000 $B$\u0000 real permutohedral varieties","authors":"Younghan Yoon","doi":"10.1112/blms.70125","DOIUrl":"10.1112/blms.70125","url":null,"abstract":"<p>Type <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> and type <span></span><math>\u0000 <semantics>\u0000 <mi>B</mi>\u0000 <annotation>$B$</annotation>\u0000 </semantics></math> permutohedral varieties are classic examples of mathematics, and their topological invariants are well-known. This naturally leads to the investigation of the topology of their real loci, known as type <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> and type <span></span><math>\u0000 <semantics>\u0000 <mi>B</mi>\u0000 <annotation>$B$</annotation>\u0000 </semantics></math> real permutohedral varieties. The rational cohomology rings of type <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> real permutohedral varieties are fully described in terms of alternating permutations. Until now, only rational Betti numbers of type <span></span><math>\u0000 <semantics>\u0000 <mi>B</mi>\u0000 <annotation>$B$</annotation>\u0000 </semantics></math> real permutohedral varieties have been described in terms of <span></span><math>\u0000 <semantics>\u0000 <mi>B</mi>\u0000 <annotation>$B$</annotation>\u0000 </semantics></math>-snakes. In this paper, we explicitly describe the multiplicative structure of the cohomology rings of type <span></span><math>\u0000 <semantics>\u0000 <mi>B</mi>\u0000 <annotation>$B$</annotation>\u0000 </semantics></math> real permutohedral varieties in terms of <span></span><math>\u0000 <semantics>\u0000 <mi>B</mi>\u0000 <annotation>$B$</annotation>\u0000 </semantics></math>-snakes.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2770-2788"},"PeriodicalIF":0.9,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Faber's socle intersection numbers via Gromov–Witten theory of elliptic curve 通过椭圆曲线的Gromov-Witten理论得到Faber的交点数
IF 0.9 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-06-23 DOI: 10.1112/blms.70117
Xavier Blot, Sergey Shadrin, Ishan Jaztar Singh
{"title":"Faber's socle intersection numbers via Gromov–Witten theory of elliptic curve","authors":"Xavier Blot,&nbsp;Sergey Shadrin,&nbsp;Ishan Jaztar Singh","doi":"10.1112/blms.70117","DOIUrl":"10.1112/blms.70117","url":null,"abstract":"<p>The goal of this very short note is to give a new proof of Faber's formula for the socle intersection numbers in the tautological ring of <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mi>g</mi>\u0000 </msub>\u0000 <annotation>$mathcal {M}_g$</annotation>\u0000 </semantics></math>. This new proof exhibits a new beautiful tautological relation that stems from the recent work of Oberdieck–Pixton on the Gromov–Witten theory of the elliptic curve via a refinement of their argument, and some straightforward computation with the double ramification cycles that enters the recursion relations for the Hamiltonians of the KdV hierarchy.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2698-2707"},"PeriodicalIF":0.9,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145021814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信