双星布局和点多网

IF 0.9 3区 数学 Q2 MATHEMATICS
Yongqiang Liu, Wentao Xie
{"title":"双星布局和点多网","authors":"Yongqiang Liu,&nbsp;Wentao Xie","doi":"10.1112/blms.70089","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> be a hyperplane arrangement in a complex projective space. It is an open question if the degree one cohomology jump loci (with complex coefficients) are determined by the combinatorics of <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math>. By the work of Falk and Yuzvinsky [Compositio Math. 143 (2007), no. 4, 1069–1088] and Marco-Buzunáriz [Graphs Combin. 25 (2009), no. 4, 469–488], all the irreducible components passing through the origin are determined by the multinet structure, which is combinatorially determined. Denham and Suciu introduced the pointed multinet structure, which is combinatorially determined, to obtain examples of arrangements with translated positive-dimensional components in the degree one cohomology jump loci [Proc. Lond. Math. Soc. (3) 108 (2014), no. 6, 1435–1470]. Suciu asked the question if all translated positive-dimensional components appear in this manner [Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), no. 2, 417–481]. In this paper, we show that the double star arrangement introduced by Ishibashi, Sugawara, and Yoshinaga [Adv. in Appl. Math. 162 (2025), Paper No. 102790, Example 3.2] gives a negative answer to this question.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"2210-2218"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double star arrangement and the pointed multinet\",\"authors\":\"Yongqiang Liu,&nbsp;Wentao Xie\",\"doi\":\"10.1112/blms.70089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> be a hyperplane arrangement in a complex projective space. It is an open question if the degree one cohomology jump loci (with complex coefficients) are determined by the combinatorics of <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math>. By the work of Falk and Yuzvinsky [Compositio Math. 143 (2007), no. 4, 1069–1088] and Marco-Buzunáriz [Graphs Combin. 25 (2009), no. 4, 469–488], all the irreducible components passing through the origin are determined by the multinet structure, which is combinatorially determined. Denham and Suciu introduced the pointed multinet structure, which is combinatorially determined, to obtain examples of arrangements with translated positive-dimensional components in the degree one cohomology jump loci [Proc. Lond. Math. Soc. (3) 108 (2014), no. 6, 1435–1470]. Suciu asked the question if all translated positive-dimensional components appear in this manner [Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), no. 2, 417–481]. In this paper, we show that the double star arrangement introduced by Ishibashi, Sugawara, and Yoshinaga [Adv. in Appl. Math. 162 (2025), Paper No. 102790, Example 3.2] gives a negative answer to this question.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 7\",\"pages\":\"2210-2218\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70089\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70089","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设A $\mathcal {A}$是复射影空间中的超平面排列。1次上同跳位点(复系数)是否由A $\mathcal {A}$的组合决定是一个悬而未决的问题。由Falk和Yuzvinsky的工作[作曲数学]. 143 (2007),no。[图组合,25 (2009),no. 4],[1069-1088]和Marco-Buzunáriz。[4,469 - 488],所有通过原点的不可约分量由多网结构确定,多网结构是组合确定的。Denham和Suciu引入了组合确定的点多网结构,以获得在1度上同调跳跃位点中具有平移的正维分量的排列示例[j]。数学。Soc。(3) 108(2014)号;6, 1435 - 1470]。Suciu提出了一个问题,如果所有平移的正维分量都以这种方式出现[Ann。前沿空中管制官。科学。图卢兹数学。(6) 23(2014)号。2, 417 - 481]。在本文中,我们证明了由Ishibashi, Sugawara, and Yoshinaga [ad .]在apple中引入的双星排列。数学。162(2025),论文编号102790,例3.2]给出了否定的答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double star arrangement and the pointed multinet

Let A $\mathcal {A}$ be a hyperplane arrangement in a complex projective space. It is an open question if the degree one cohomology jump loci (with complex coefficients) are determined by the combinatorics of A $\mathcal {A}$ . By the work of Falk and Yuzvinsky [Compositio Math. 143 (2007), no. 4, 1069–1088] and Marco-Buzunáriz [Graphs Combin. 25 (2009), no. 4, 469–488], all the irreducible components passing through the origin are determined by the multinet structure, which is combinatorially determined. Denham and Suciu introduced the pointed multinet structure, which is combinatorially determined, to obtain examples of arrangements with translated positive-dimensional components in the degree one cohomology jump loci [Proc. Lond. Math. Soc. (3) 108 (2014), no. 6, 1435–1470]. Suciu asked the question if all translated positive-dimensional components appear in this manner [Ann. Fac. Sci. Toulouse Math. (6) 23 (2014), no. 2, 417–481]. In this paper, we show that the double star arrangement introduced by Ishibashi, Sugawara, and Yoshinaga [Adv. in Appl. Math. 162 (2025), Paper No. 102790, Example 3.2] gives a negative answer to this question.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信