{"title":"关于0维连贯捆的堆叠:动机方面","authors":"Barbara Fantechi, Andrea T. Ricolfi","doi":"10.1112/blms.70096","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a variety. In this survey, we study (decompositions of) the motivic class, in the Grothendieck ring of stacks, of the stack <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>o</mi>\n <msup>\n <mi>h</mi>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {C}\\hspace{-2.5pt}{o}\\hspace{-1.99997pt}{h}^n(X)$</annotation>\n </semantics></math> of 0-dimensional coherent sheaves of length <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. To do so, we review the construction of the support map <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>o</mi>\n <msup>\n <mi>h</mi>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <msup>\n <mo>Sym</mo>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {C}\\hspace{-2.5pt}{o}\\hspace{-1.99997pt}{h}^n(X) \\rightarrow \\operatorname{Sym}^n(X)$</annotation>\n </semantics></math> to the symmetric product and we prove that, for any closed point <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$p \\in X$</annotation>\n </semantics></math>, the motive of the punctual stack <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>o</mi>\n <msup>\n <mi>h</mi>\n <mi>n</mi>\n </msup>\n <msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mi>p</mi>\n </msub>\n </mrow>\n <annotation>$\\mathcal {C}\\hspace{-2.5pt}{o}\\hspace{-1.99997pt}{h}^n(X)_p$</annotation>\n </semantics></math> parametrising sheaves supported at <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> only depends on a formal neighbourhood of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. We perform the same analysis for the Quot-to-Chow morphism <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Quot</mo>\n <mi>X</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <msup>\n <mo>Sym</mo>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Quot}_X({\\mathcal {E}},n) \\rightarrow \\operatorname{Sym}^n(X)$</annotation>\n </semantics></math>, for a fixed sheaf <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>∈</mo>\n <mo>Coh</mo>\n <mi>X</mi>\n </mrow>\n <annotation>${\\mathcal {E}}\\in \\operatorname{Coh}X$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1607-1649"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70096","citationCount":"0","resultStr":"{\"title\":\"On the stack of 0-dimensional coherent sheaves: Motivic aspects\",\"authors\":\"Barbara Fantechi, Andrea T. Ricolfi\",\"doi\":\"10.1112/blms.70096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> be a variety. In this survey, we study (decompositions of) the motivic class, in the Grothendieck ring of stacks, of the stack <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mi>o</mi>\\n <msup>\\n <mi>h</mi>\\n <mi>n</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {C}\\\\hspace{-2.5pt}{o}\\\\hspace{-1.99997pt}{h}^n(X)$</annotation>\\n </semantics></math> of 0-dimensional coherent sheaves of length <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>. To do so, we review the construction of the support map <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mi>o</mi>\\n <msup>\\n <mi>h</mi>\\n <mi>n</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <msup>\\n <mo>Sym</mo>\\n <mi>n</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {C}\\\\hspace{-2.5pt}{o}\\\\hspace{-1.99997pt}{h}^n(X) \\\\rightarrow \\\\operatorname{Sym}^n(X)$</annotation>\\n </semantics></math> to the symmetric product and we prove that, for any closed point <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mi>X</mi>\\n </mrow>\\n <annotation>$p \\\\in X$</annotation>\\n </semantics></math>, the motive of the punctual stack <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <mi>o</mi>\\n <msup>\\n <mi>h</mi>\\n <mi>n</mi>\\n </msup>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>p</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\mathcal {C}\\\\hspace{-2.5pt}{o}\\\\hspace{-1.99997pt}{h}^n(X)_p$</annotation>\\n </semantics></math> parametrising sheaves supported at <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> only depends on a formal neighbourhood of <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>. We perform the same analysis for the Quot-to-Chow morphism <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mo>Quot</mo>\\n <mi>X</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>E</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>→</mo>\\n <msup>\\n <mo>Sym</mo>\\n <mi>n</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\operatorname{Quot}_X({\\\\mathcal {E}},n) \\\\rightarrow \\\\operatorname{Sym}^n(X)$</annotation>\\n </semantics></math>, for a fixed sheaf <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>E</mi>\\n <mo>∈</mo>\\n <mo>Coh</mo>\\n <mi>X</mi>\\n </mrow>\\n <annotation>${\\\\mathcal {E}}\\\\in \\\\operatorname{Coh}X$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1607-1649\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70096\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70096\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70096","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设X$ X$是一个变量。在这次调查中,我们研究了格罗滕迪克堆栈环中的动机类(分解),长度为n的0维相干束的堆栈C oh n(X)$ \mathcal {C}\hspace{-2.5pt}{o}\hspace{-1.99997pt}{h}^n(X)$$n$对X$ X$。为此,我们回顾了支持映射C o h n (X)→Sym n (X)$ \mathcal {C}\hspace{-2.5pt}{o}\hspace{-1.99997pt}{h}^n(X) \rightarrow \operatorname{Sym}^n(X)$的对称积,证明对于X$中的任意闭点p∈X$ p \,准时堆栈C o h n(X) p$ \mathcal {C}\hspace{-2.5pt}{o}\hspace{-1.99997pt}{h}^n(X)_p$在p$ p$处支承的参数化轴只依赖于p$ p$的形式邻域。我们对quote -to- chow多态性进行了相同的分析。n)→Sym n(X)$ \operatorname{Quot}_X({\mathcal {E}},n) \rightarrow \operatorname{Sym}^n(X)$,对于固定束E∈Coh X$ {\mathcal {E}}\in \operatorname{Coh}X$。
On the stack of 0-dimensional coherent sheaves: Motivic aspects
Let be a variety. In this survey, we study (decompositions of) the motivic class, in the Grothendieck ring of stacks, of the stack of 0-dimensional coherent sheaves of length on . To do so, we review the construction of the support map to the symmetric product and we prove that, for any closed point , the motive of the punctual stack parametrising sheaves supported at only depends on a formal neighbourhood of . We perform the same analysis for the Quot-to-Chow morphism , for a fixed sheaf .