Étale几何起源的动机

IF 0.9 3区 数学 Q2 MATHEMATICS
Raphaël Ruimy, Swann Tubach
{"title":"Étale几何起源的动机","authors":"Raphaël Ruimy,&nbsp;Swann Tubach","doi":"10.1112/blms.70085","DOIUrl":null,"url":null,"abstract":"<p>Over qcqs finite-dimensional schemes, we prove that étale motives of geometric origin can be characterised by a constructibility property which is purely categorical, giving a full answer to the question ‘Do all constructible étale motives come from geometry?’ which dates back to Cisinski and Déglise's work. We also show that they afford the continuity property and satisfy h-descent and Milnor excision.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"2116-2131"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70085","citationCount":"0","resultStr":"{\"title\":\"Étale motives of geometric origin\",\"authors\":\"Raphaël Ruimy,&nbsp;Swann Tubach\",\"doi\":\"10.1112/blms.70085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over qcqs finite-dimensional schemes, we prove that étale motives of geometric origin can be characterised by a constructibility property which is purely categorical, giving a full answer to the question ‘Do all constructible étale motives come from geometry?’ which dates back to Cisinski and Déglise's work. We also show that they afford the continuity property and satisfy h-descent and Milnor excision.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 7\",\"pages\":\"2116-2131\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70085\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70085\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70085","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在qcqs有限维格式上,我们证明了几何起源的可变动机可以用纯范畴的可构造性来表征,从而给出了“所有可构造的可变动机都来自几何吗?”这可以追溯到Cisinski和dsamglise的研究。我们还证明了它们具有连续性,并且满足h下降和Milnor切除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Étale motives of geometric origin

Étale motives of geometric origin

Étale motives of geometric origin

Étale motives of geometric origin

Étale motives of geometric origin

Over qcqs finite-dimensional schemes, we prove that étale motives of geometric origin can be characterised by a constructibility property which is purely categorical, giving a full answer to the question ‘Do all constructible étale motives come from geometry?’ which dates back to Cisinski and Déglise's work. We also show that they afford the continuity property and satisfy h-descent and Milnor excision.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信