Alessandro De Stefani, Shreedevi K. Masuti, Maria Evelina Rossi, Jugal K. Verma
{"title":"二阶理想幂的Hilbert-Kunz多重性","authors":"Alessandro De Stefani, Shreedevi K. Masuti, Maria Evelina Rossi, Jugal K. Verma","doi":"10.1112/blms.70086","DOIUrl":null,"url":null,"abstract":"<p>We study the behavior of the Hilbert–Kunz multiplicity of powers of an ideal in a local ring. In dimension 2, we provide answers to some problems raised by Smirnov, and give a criterion to answer one of his questions in terms of a “Ratliff–Rush version” of the Hilbert–Kunz multiplicity.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"2155-2176"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70086","citationCount":"0","resultStr":"{\"title\":\"Hilbert–Kunz multiplicity of powers of ideals in dimension two\",\"authors\":\"Alessandro De Stefani, Shreedevi K. Masuti, Maria Evelina Rossi, Jugal K. Verma\",\"doi\":\"10.1112/blms.70086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the behavior of the Hilbert–Kunz multiplicity of powers of an ideal in a local ring. In dimension 2, we provide answers to some problems raised by Smirnov, and give a criterion to answer one of his questions in terms of a “Ratliff–Rush version” of the Hilbert–Kunz multiplicity.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 7\",\"pages\":\"2155-2176\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70086\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70086\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70086","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hilbert–Kunz multiplicity of powers of ideals in dimension two
We study the behavior of the Hilbert–Kunz multiplicity of powers of an ideal in a local ring. In dimension 2, we provide answers to some problems raised by Smirnov, and give a criterion to answer one of his questions in terms of a “Ratliff–Rush version” of the Hilbert–Kunz multiplicity.