Erratum: Symplectic involutions of K 3 [ n ] $K3^{[n]}$ type and Kummer n type manifolds

IF 0.9 3区 数学 Q2 MATHEMATICS
Ljudmila Kamenova, Giovanni Mongardi, Alexei Oblomkov
{"title":"Erratum: Symplectic involutions of \n \n \n K\n \n 3\n \n [\n n\n ]\n \n \n \n $K3^{[n]}$\n type and Kummer n type manifolds","authors":"Ljudmila Kamenova,&nbsp;Giovanni Mongardi,&nbsp;Alexei Oblomkov","doi":"10.1112/blms.70128","DOIUrl":null,"url":null,"abstract":"<p>In this note, we present a corrected formula for the enumeration of connected components of the locus fixed by a symplectic involution inside hyperkähler manifolds of types <span></span><math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <msup>\n <mn>3</mn>\n <mrow>\n <mo>[</mo>\n <mi>n</mi>\n <mo>]</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$K3^{[n]}$</annotation>\n </semantics></math> and generalized Kummer. We also provide further precisions concerning the involutions considered in the Kummer case.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 7","pages":"2235-2237"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70128","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70128","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we present a corrected formula for the enumeration of connected components of the locus fixed by a symplectic involution inside hyperkähler manifolds of types K 3 [ n ] $K3^{[n]}$ and generalized Kummer. We also provide further precisions concerning the involutions considered in the Kummer case.

订正:K3 [n] $K3^{[n]}$型和Kummer n型流形的辛对合
在这篇文章中,给出了K3 [n] $K3^{[n]}$和广义Kummer型hyperkähler流形内由辛对合固定的轨迹连通分量的一个修正公式。我们还提供了关于Kummer案件中所考虑的牵连的进一步精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信