{"title":"Orthogonal almost complex structure and its Nijenhuis tensor","authors":"Zizhou Tang, Wenjiao Yan","doi":"10.1112/blms.70044","DOIUrl":"https://doi.org/10.1112/blms.70044","url":null,"abstract":"<p>In this paper, we demonstrate that on an almost Hermitian manifold <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mi>J</mi>\u0000 <mo>,</mo>\u0000 <mi>d</mi>\u0000 <msup>\u0000 <mi>s</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(M^{2n}, J, ds^2)$</annotation>\u0000 </semantics></math>, a 2-form <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>φ</mi>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mi>Φ</mi>\u0000 </mrow>\u0000 <annotation>$varphi =S^*Phi$</annotation>\u0000 </semantics></math>, the pullback of the Kähler form <span></span><math>\u0000 <semantics>\u0000 <mi>Φ</mi>\u0000 <annotation>$Phi$</annotation>\u0000 </semantics></math> on the twistor bundle over <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$M^{2n}$</annotation>\u0000 </semantics></math>, is nondegenerate if the squared norm <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 <mi>N</mi>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$|N|^2$</annotation>\u0000 </semantics></math> of the Nijenhuis tensor is less than <span></span><math>\u0000 <semantics>\u0000 <mfrac>\u0000 <mn>64</mn>\u0000 <mn>5</mn>\u0000 </mfrac>\u0000 <annotation>$frac{64}{5}$</annotation>\u0000 </semantics></math> when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$ngeqslant 3$</annotation>\u0000 </semantics></math> or less than 16 when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$n=2$</annotation>\u0000 </semantics></math>. As one of the consequences, there exists no orthogonal almost complex structure on the standard sphere <span></span><math>\u0000 <sem","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1512-1523"},"PeriodicalIF":0.8,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Baby Monster is the largest group with at most 2 irreducible characters with the same degree","authors":"Juan Martínez Madrid","doi":"10.1112/blms.70040","DOIUrl":"https://doi.org/10.1112/blms.70040","url":null,"abstract":"<p>We classify all finite groups such that all irreducible character degrees appear with multiplicity at most 2. As a consequence, we prove that the largest group with at most two irreducible characters of the same degree is the Baby Monster.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1453-1467"},"PeriodicalIF":0.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equality of skew Schur functions in noncommuting variables","authors":"Emma Yu Jin, Stephanie van Willigenburg","doi":"10.1112/blms.70037","DOIUrl":"https://doi.org/10.1112/blms.70037","url":null,"abstract":"<p>The question of classifying when two skew Schur functions are equal is a substantial open problem, which remains unsolved for over a century. In 2022, Aliniaeifard, Li, and van Willigenburg introduced skew Schur functions in noncommuting variables, <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>δ</mi>\u0000 <mo>,</mo>\u0000 <mi>D</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$s_{(delta,mathcal {D})}$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>D</mi>\u0000 <annotation>$mathcal {D}$</annotation>\u0000 </semantics></math> is a connected skew diagram with <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> boxes and <span></span><math>\u0000 <semantics>\u0000 <mi>δ</mi>\u0000 <annotation>$delta$</annotation>\u0000 </semantics></math> is a permutation in the symmetric group <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>S</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$S_n$</annotation>\u0000 </semantics></math>. In this paper, we combine these two and classify when two skew Schur functions in noncommuting variables are equal: <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>δ</mi>\u0000 <mo>,</mo>\u0000 <mi>D</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <msub>\u0000 <mi>s</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>τ</mi>\u0000 <mo>,</mo>\u0000 <mi>T</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$s_{(delta,mathcal {D})} = s_{(tau,mathcal {T})}$</annotation>\u0000 </semantics></math> such that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 <mo>≠</mo>\u0000 <mi>T</mi>\u0000 </mrow>\u0000 <annotation>$mathcal {D}ne mathcal {T}$</annotation>\u0000 </semantics></math> if and only if <span></span><math>\u0000 <semantics>\u0000 <mi","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1415-1428"},"PeriodicalIF":0.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Renato G. Bettiol, Mario Kummer, Ricardo A. E. Mendes
{"title":"Two results on the Convex Algebraic Geometry of sets with continuous symmetries","authors":"Renato G. Bettiol, Mario Kummer, Ricardo A. E. Mendes","doi":"10.1112/blms.70035","DOIUrl":"https://doi.org/10.1112/blms.70035","url":null,"abstract":"<p>We prove two results on convex subsets of Euclidean spaces invariant under an orthogonal group action. First, we show that invariant spectrahedra admit an equivariant spectrahedral description, that is, can be described by an equivariant linear matrix inequality. Second, we show that the bijection induced by Kostant's Convexity Theorem between convex subsets invariant under a polar representation and convex subsets of a section invariant under the Weyl group preserves the classes of convex semialgebraic sets, spectrahedral shadows, and rigidly convex sets.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1388-1408"},"PeriodicalIF":0.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Closed \u0000 \u0000 \u0000 G\u0000 2\u0000 \u0000 $G_2$\u0000 -structures with negative Ricci curvature","authors":"Alec Payne","doi":"10.1112/blms.70029","DOIUrl":"https://doi.org/10.1112/blms.70029","url":null,"abstract":"<p>We study existence problems for closed <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$G_2$</annotation>\u0000 </semantics></math>-structures with negative Ricci curvature, and we prove the <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$G_2$</annotation>\u0000 </semantics></math>-Goldberg conjecture for noncompact manifolds. We first show that no closed manifold admits a closed <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$G_2$</annotation>\u0000 </semantics></math>-structure with negative Ricci curvature. In the noncompact setting, we show that no complete manifold admits a closed <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$G_2$</annotation>\u0000 </semantics></math>-structure with Ricci curvature pinched sufficiently close to a negative constant. As a consequence, an Einstein closed <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$G_2$</annotation>\u0000 </semantics></math>-structure on a complete manifold must be torsion-free. In addition, when the Einstein metric is incomplete, we find restrictions on lengths of geodesics.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1270-1284"},"PeriodicalIF":0.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}