{"title":"Derived preprojective algebras and spherical twist functors","authors":"Yuya Mizuno, Dong Yang","doi":"10.1112/blms.70127","DOIUrl":"10.1112/blms.70127","url":null,"abstract":"<p>We study silting objects over derived preprojective algebras of acyclic quivers by giving a direct relationship between silting objects, spherical twist functors, and mutations. Especially for a Dynkin quiver, we establish a bijection between the elements of the braid group and the set of isomorphism classes of basic silting objects over the derived preprojective algebra.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2799-2815"},"PeriodicalIF":0.9,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145021749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exponential actions defined by vector configurations, Gale duality, and moment-angle manifolds","authors":"Taras Panov","doi":"10.1112/blms.70122","DOIUrl":"10.1112/blms.70122","url":null,"abstract":"<p>Exponential actions defined by vector configurations provide a universal framework for several constructions of holomorphic dynamics, non-Kähler complex geometry, toric geometry and topology. These include leaf spaces of holomorphic foliations, intersections of real and Hermitian quadrics, the quotient construction of simplicial toric varieties, LVM and LVMB manifolds, complex-analytic structures on moment-angle manifolds and their partial quotients, reviewed in this survey. In all cases, the geometry and topology of the appropriate quotient object can be described by combinatorial data including a pair of Gale dual vector configurations.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2571-2629"},"PeriodicalIF":0.9,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70122","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quasi-projective varieties are Grassmannians for fully exact subcategories of quiver representations","authors":"Alexander Pütz, Julia Sauter","doi":"10.1112/blms.70123","DOIUrl":"10.1112/blms.70123","url":null,"abstract":"<p>Reineke and independent other authors proved that every projective variety arises as a quiver Grassmannian. We prove the claim in the title by restricting Reineke's isomorphism to Grassmannians for a fully exact subcategory.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2748-2756"},"PeriodicalIF":0.9,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nontautological cycles on moduli spaces of smooth pointed curves","authors":"Dario Faro, Carolina Tamborini","doi":"10.1112/blms.70113","DOIUrl":"10.1112/blms.70113","url":null,"abstract":"<p>In recent work by Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini, it was proven that for infinitely many values of <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$g$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>, there exist nontautological algebraic cohomology classes on the moduli space <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 <mo>,</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$mathcal {M}_{g,n}$</annotation>\u0000 </semantics></math> of smooth genus <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$g$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-pointed curves. Here we show how a generalization of their technique allows to cover most of the remaining cases, proving the existence of nontautological algebraic cohomology classes on the moduli space <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 <mo>,</mo>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$mathcal {M}_{g,n}$</annotation>\u0000 </semantics></math> for all but finitely many values of <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$g$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2630-2638"},"PeriodicalIF":0.9,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Curl curl versus Dirichlet Laplacian eigenvalues","authors":"Jonathan Rohleder","doi":"10.1112/blms.70121","DOIUrl":"10.1112/blms.70121","url":null,"abstract":"<p>We provide an upper estimate for the eigenvalues of the curl curl operator on a bounded, three-dimensional Euclidean domain in terms of eigenvalues of the Dirichlet Laplacian. The result complements recent inequalities between curl curl and Neumann Laplacian eigenvalues. The curl curl eigenvalues considered here correspond to the Maxwell eigenvalue problem with constant material parameters.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2738-2747"},"PeriodicalIF":0.9,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70121","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wild blocks of type \u0000 \u0000 A\u0000 $A$\u0000 Hecke algebras are strictly wild","authors":"Liron Speyer","doi":"10.1112/blms.70115","DOIUrl":"10.1112/blms.70115","url":null,"abstract":"<p>We prove that all wild blocks of type <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> Hecke algebras with quantum characteristic <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$e geqslant 3$</annotation>\u0000 </semantics></math> — that is, blocks of weight at least 2 — are <i>strictly</i> wild, with the possible exception of the weight 2 Rouquier block for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 <mo>=</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$e = 3$</annotation>\u0000 </semantics></math>. As a corollary, we show that for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>e</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$e geqslant 3$</annotation>\u0000 </semantics></math>, all wild blocks of the <span></span><math>\u0000 <semantics>\u0000 <mi>q</mi>\u0000 <annotation>$q$</annotation>\u0000 </semantics></math>-Schur algebras are strictly wild, without exception.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2658-2679"},"PeriodicalIF":0.9,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145021972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}