Bulletin of the London Mathematical Society最新文献

筛选
英文 中文
Orthogonal almost complex structure and its Nijenhuis tensor 正交几乎复结构及其Nijenhuis张量
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-03-05 DOI: 10.1112/blms.70044
Zizhou Tang, Wenjiao Yan
{"title":"Orthogonal almost complex structure and its Nijenhuis tensor","authors":"Zizhou Tang, Wenjiao Yan","doi":"10.1112/blms.70044","DOIUrl":"https://doi.org/10.1112/blms.70044","url":null,"abstract":"<p>In this paper, we demonstrate that on an almost Hermitian manifold <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <mi>J</mi>\u0000 <mo>,</mo>\u0000 <mi>d</mi>\u0000 <msup>\u0000 <mi>s</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(M^{2n}, J, ds^2)$</annotation>\u0000 </semantics></math>, a 2-form <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>φ</mi>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mi>S</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <mi>Φ</mi>\u0000 </mrow>\u0000 <annotation>$varphi =S^*Phi$</annotation>\u0000 </semantics></math>, the pullback of the Kähler form <span></span><math>\u0000 <semantics>\u0000 <mi>Φ</mi>\u0000 <annotation>$Phi$</annotation>\u0000 </semantics></math> on the twistor bundle over <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>M</mi>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$M^{2n}$</annotation>\u0000 </semantics></math>, is nondegenerate if the squared norm <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 <mi>N</mi>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$|N|^2$</annotation>\u0000 </semantics></math> of the Nijenhuis tensor is less than <span></span><math>\u0000 <semantics>\u0000 <mfrac>\u0000 <mn>64</mn>\u0000 <mn>5</mn>\u0000 </mfrac>\u0000 <annotation>$frac{64}{5}$</annotation>\u0000 </semantics></math> when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$ngeqslant 3$</annotation>\u0000 </semantics></math> or less than 16 when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$n=2$</annotation>\u0000 </semantics></math>. As one of the consequences, there exists no orthogonal almost complex structure on the standard sphere <span></span><math>\u0000 <sem","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1512-1523"},"PeriodicalIF":0.8,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Baby Monster is the largest group with at most 2 irreducible characters with the same degree 婴儿怪物是最大的群体,最多有2个具有相同程度的不可约角色
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-03-04 DOI: 10.1112/blms.70040
Juan Martínez Madrid
{"title":"The Baby Monster is the largest group with at most 2 irreducible characters with the same degree","authors":"Juan Martínez Madrid","doi":"10.1112/blms.70040","DOIUrl":"https://doi.org/10.1112/blms.70040","url":null,"abstract":"<p>We classify all finite groups such that all irreducible character degrees appear with multiplicity at most 2. As a consequence, we prove that the largest group with at most two irreducible characters of the same degree is the Baby Monster.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1453-1467"},"PeriodicalIF":0.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equality of skew Schur functions in noncommuting variables 非交换变量中斜Schur函数的等式
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-03-03 DOI: 10.1112/blms.70037
Emma Yu Jin, Stephanie van Willigenburg
{"title":"Equality of skew Schur functions in noncommuting variables","authors":"Emma Yu Jin,&nbsp;Stephanie van Willigenburg","doi":"10.1112/blms.70037","DOIUrl":"https://doi.org/10.1112/blms.70037","url":null,"abstract":"&lt;p&gt;The question of classifying when two skew Schur functions are equal is a substantial open problem, which remains unsolved for over a century. In 2022, Aliniaeifard, Li, and van Willigenburg introduced skew Schur functions in noncommuting variables, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;δ&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$s_{(delta,mathcal {D})}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {D}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a connected skew diagram with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;annotation&gt;$n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; boxes and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;δ&lt;/mi&gt;\u0000 &lt;annotation&gt;$delta$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a permutation in the symmetric group &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$S_n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In this paper, we combine these two and classify when two skew Schur functions in noncommuting variables are equal: &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;δ&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;τ&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$s_{(delta,mathcal {D})} = s_{(tau,mathcal {T})}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; such that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;D&lt;/mi&gt;\u0000 &lt;mo&gt;≠&lt;/mo&gt;\u0000 &lt;mi&gt;T&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mathcal {D}ne mathcal {T}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; if and only if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1415-1428"},"PeriodicalIF":0.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two results on the Convex Algebraic Geometry of sets with continuous symmetries 关于连续对称集凸代数几何的两个结果
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-03-03 DOI: 10.1112/blms.70035
Renato G. Bettiol, Mario Kummer, Ricardo A. E. Mendes
{"title":"Two results on the Convex Algebraic Geometry of sets with continuous symmetries","authors":"Renato G. Bettiol,&nbsp;Mario Kummer,&nbsp;Ricardo A. E. Mendes","doi":"10.1112/blms.70035","DOIUrl":"https://doi.org/10.1112/blms.70035","url":null,"abstract":"<p>We prove two results on convex subsets of Euclidean spaces invariant under an orthogonal group action. First, we show that invariant spectrahedra admit an equivariant spectrahedral description, that is, can be described by an equivariant linear matrix inequality. Second, we show that the bijection induced by Kostant's Convexity Theorem between convex subsets invariant under a polar representation and convex subsets of a section invariant under the Weyl group preserves the classes of convex semialgebraic sets, spectrahedral shadows, and rigidly convex sets.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1388-1408"},"PeriodicalIF":0.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143938739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Closed G 2 $G_2$ -structures with negative Ricci curvature 负Ricci曲率的封闭g2 $G_2$结构
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-03-03 DOI: 10.1112/blms.70029
Alec Payne
{"title":"Closed \u0000 \u0000 \u0000 G\u0000 2\u0000 \u0000 $G_2$\u0000 -structures with negative Ricci curvature","authors":"Alec Payne","doi":"10.1112/blms.70029","DOIUrl":"https://doi.org/10.1112/blms.70029","url":null,"abstract":"<p>We study existence problems for closed <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$G_2$</annotation>\u0000 </semantics></math>-structures with negative Ricci curvature, and we prove the <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$G_2$</annotation>\u0000 </semantics></math>-Goldberg conjecture for noncompact manifolds. We first show that no closed manifold admits a closed <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$G_2$</annotation>\u0000 </semantics></math>-structure with negative Ricci curvature. In the noncompact setting, we show that no complete manifold admits a closed <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$G_2$</annotation>\u0000 </semantics></math>-structure with Ricci curvature pinched sufficiently close to a negative constant. As a consequence, an Einstein closed <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <annotation>$G_2$</annotation>\u0000 </semantics></math>-structure on a complete manifold must be torsion-free. In addition, when the Einstein metric is incomplete, we find restrictions on lengths of geodesics.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1270-1284"},"PeriodicalIF":0.8,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143835875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A higher dimensional version of Fáry's theorem Fáry定理的高维版本
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-02-27 DOI: 10.1112/blms.70036
Karim Adiprasito, Zuzana Patáková
{"title":"A higher dimensional version of Fáry's theorem","authors":"Karim Adiprasito,&nbsp;Zuzana Patáková","doi":"10.1112/blms.70036","DOIUrl":"https://doi.org/10.1112/blms.70036","url":null,"abstract":"<p>We prove a generalization of István Fáry's celebrated theorem to higher dimensions. Namely, we show that if a finite simplicial complex <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> can be piecewise linearly embedded into a <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-dimensional PL manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>, then there is a triangulation of <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> containing <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> as a subcomplex.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1409-1414"},"PeriodicalIF":0.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70036","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rigidity of proper holomorphic maps between nonequidimensional Fock–Bargmann–Hartogs domains 非等维Fock-Bargmann-Hartogs域间固有全纯映射的刚性
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-02-27 DOI: 10.1112/blms.70038
Guicong Su, Lei Wang
{"title":"Rigidity of proper holomorphic maps between nonequidimensional Fock–Bargmann–Hartogs domains","authors":"Guicong Su,&nbsp;Lei Wang","doi":"10.1112/blms.70038","DOIUrl":"https://doi.org/10.1112/blms.70038","url":null,"abstract":"<p>In this article, we introduce a novel rigidity theorem that investigates proper holomorphic maps between Fock–Bargmann–Hartogs domains of varying dimensions. Unlike previous studies, this theorem does not impose any restrictions on the codimension. Our main result demonstrates that any such proper holomorphic map <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math> can be equivalently represented as <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msqrt>\u0000 <mi>k</mi>\u0000 </msqrt>\u0000 <msub>\u0000 <mi>z</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mtext>…</mtext>\u0000 <mo>,</mo>\u0000 <msqrt>\u0000 <mi>k</mi>\u0000 </msqrt>\u0000 <msub>\u0000 <mi>z</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mtext>…</mtext>\u0000 <mo>,</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <msup>\u0000 <mi>w</mi>\u0000 <mi>k</mi>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(sqrt {k} z_1,ldots, sqrt {k} z_n, 0,ldots, 0, w^k)$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math> is a positive integer.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1429-1444"},"PeriodicalIF":0.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finiteness properties and relatively hyperbolic groups 有限性质和相对双曲群
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-02-26 DOI: 10.1112/blms.70039
Harsh Patil
{"title":"Finiteness properties and relatively hyperbolic groups","authors":"Harsh Patil","doi":"10.1112/blms.70039","DOIUrl":"https://doi.org/10.1112/blms.70039","url":null,"abstract":"<p>We show that properties <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$F_n$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <msub>\u0000 <mi>P</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$FP_n$</annotation>\u0000 </semantics></math> hold for a relatively hyperbolic group if and only if they hold for all the peripheral subgroups. As an application we show that there are at least countably many distinct quasi-isometry classes of one-ended non-amenable groups that are type <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$F_n$</annotation>\u0000 </semantics></math> but not <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>F</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$F_{n+1}$</annotation>\u0000 </semantics></math> and similarly of type <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <msub>\u0000 <mi>P</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$FP_n$</annotation>\u0000 </semantics></math> and not <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <msub>\u0000 <mi>P</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$FP_{n+1}$</annotation>\u0000 </semantics></math> for all positive integers <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1445-1452"},"PeriodicalIF":0.8,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new upper bound for the growth factor in Gaussian elimination with complete pivoting 完全旋转高斯消去中生长因子的一个新的上界
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-02-26 DOI: 10.1112/blms.70034
Ankit Bisain, Alan Edelman, John Urschel
{"title":"A new upper bound for the growth factor in Gaussian elimination with complete pivoting","authors":"Ankit Bisain,&nbsp;Alan Edelman,&nbsp;John Urschel","doi":"10.1112/blms.70034","DOIUrl":"https://doi.org/10.1112/blms.70034","url":null,"abstract":"<p>The growth factor in Gaussian elimination measures how large the entries of an LU factorization can be relative to the entries of the original matrix. It is a key parameter in error estimates, and one of the most fundamental topics in numerical analysis. We produce an upper bound of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>n</mi>\u0000 <mrow>\u0000 <mn>0.2079</mn>\u0000 <mi>ln</mi>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>0.91</mn>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$n^{0.2079 ln n +0.91}$</annotation>\u0000 </semantics></math> for the growth factor in Gaussian elimination with complete pivoting — the first improvement upon Wilkinson's original 1961 bound of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mspace></mspace>\u0000 <msup>\u0000 <mi>n</mi>\u0000 <mrow>\u0000 <mn>0.25</mn>\u0000 <mi>ln</mi>\u0000 <mi>n</mi>\u0000 <mo>+</mo>\u0000 <mn>0.5</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$2 , n ^{0.25ln n +0.5}$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 5","pages":"1369-1387"},"PeriodicalIF":0.8,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143939610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lorentzian polynomials and the independence sequences of graphs 洛伦兹多项式和图的独立性序列
IF 0.8 3区 数学
Bulletin of the London Mathematical Society Pub Date : 2025-02-25 DOI: 10.1112/blms.70031
Amire Bendjeddou, Leonard Hardiman
{"title":"Lorentzian polynomials and the independence sequences of graphs","authors":"Amire Bendjeddou,&nbsp;Leonard Hardiman","doi":"10.1112/blms.70031","DOIUrl":"https://doi.org/10.1112/blms.70031","url":null,"abstract":"<p>We study the multivariate independence polynomials of graphs and the log-concavity of the coefficients of their univariate restrictions. Let <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <msub>\u0000 <mi>W</mi>\u0000 <mn>4</mn>\u0000 </msub>\u0000 </msub>\u0000 <annotation>$R_{W_4}$</annotation>\u0000 </semantics></math> be the operator defined on simple and undirected graphs which replaces each edge with a caterpillar of size 4. We prove that all graphs in the image of <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <msub>\u0000 <mi>W</mi>\u0000 <mn>4</mn>\u0000 </msub>\u0000 </msub>\u0000 <annotation>$R_{W_4}$</annotation>\u0000 </semantics></math> are what we call pre-Lorentzian, that is, their multivariate independence polynomial becomes Lorentzian after appropriate manipulations. In particular, as pre-Lorentzian graphs have log-concave (and therefore unimodal) independence sequences, our result makes progress on a conjecture of Alavi, Malde, Schwenk and Erdős which asks if the independence sequence of trees or forests is unimodal.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1305-1323"},"PeriodicalIF":0.8,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143836308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信