满足一定相切条件的简单阿贝尔变换映射的有限性

IF 0.9 3区 数学 Q2 MATHEMATICS
Finn Bartsch
{"title":"满足一定相切条件的简单阿贝尔变换映射的有限性","authors":"Finn Bartsch","doi":"10.1112/blms.70119","DOIUrl":null,"url":null,"abstract":"<p>We show that given a simple abelian variety <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> and a normal variety <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> defined over a finitely generated field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> of characteristic zero, the set of non-constant morphisms <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>→</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$V \\rightarrow A$</annotation>\n </semantics></math> satisfying certain tangency conditions imposed by a Campana orbifold divisor <span></span><math>\n <semantics>\n <mi>Δ</mi>\n <annotation>$\\Delta$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is finite. To do so, we study the geometry of the scheme <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Hom</mo>\n <mo>̲</mo>\n </munder>\n <mo>nc</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>,</mo>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mi>Δ</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\underline{\\operatorname{Hom}}^{\\operatorname{nc}}(C, (A, \\Delta))$</annotation>\n </semantics></math> parameterizing such morphisms from a smooth curve <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> and show that it admits a quasi-finite non-dominant morphism to <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2723-2730"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70119","citationCount":"0","resultStr":"{\"title\":\"On the finiteness of maps into simple abelian varieties satisfying certain tangency conditions\",\"authors\":\"Finn Bartsch\",\"doi\":\"10.1112/blms.70119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that given a simple abelian variety <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> and a normal variety <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math> defined over a finitely generated field <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math> of characteristic zero, the set of non-constant morphisms <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n <mo>→</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$V \\\\rightarrow A$</annotation>\\n </semantics></math> satisfying certain tangency conditions imposed by a Campana orbifold divisor <span></span><math>\\n <semantics>\\n <mi>Δ</mi>\\n <annotation>$\\\\Delta$</annotation>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> is finite. To do so, we study the geometry of the scheme <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <munder>\\n <mo>Hom</mo>\\n <mo>̲</mo>\\n </munder>\\n <mo>nc</mo>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>C</mi>\\n <mo>,</mo>\\n <mrow>\\n <mo>(</mo>\\n <mi>A</mi>\\n <mo>,</mo>\\n <mi>Δ</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\underline{\\\\operatorname{Hom}}^{\\\\operatorname{nc}}(C, (A, \\\\Delta))$</annotation>\\n </semantics></math> parameterizing such morphisms from a smooth curve <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$C$</annotation>\\n </semantics></math> and show that it admits a quasi-finite non-dominant morphism to <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2723-2730\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70119\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70119\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了给定一个简单的阿贝尔变量a $A$和一个定义在特征为零的有限生成域K $K$上的正常变量V $V$,在A $A$上满足Campana轨道除数Δ $\Delta$所施加的相切条件的非常态射集合V→A $V \rightarrow A$是有限的。为此,我们研究了hom_no_nc (C, (A,Δ)) $\underline{\operatorname{Hom}}^{\operatorname{nc}}(C, (A, \Delta))$从光滑曲线C $C$参数化了这样的态射,并表明它承认a $A$的拟有限非显性态射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the finiteness of maps into simple abelian varieties satisfying certain tangency conditions

On the finiteness of maps into simple abelian varieties satisfying certain tangency conditions

On the finiteness of maps into simple abelian varieties satisfying certain tangency conditions

We show that given a simple abelian variety A $A$ and a normal variety V $V$ defined over a finitely generated field K $K$ of characteristic zero, the set of non-constant morphisms V A $V \rightarrow A$ satisfying certain tangency conditions imposed by a Campana orbifold divisor Δ $\Delta$ on A $A$ is finite. To do so, we study the geometry of the scheme Hom ̲ nc ( C , ( A , Δ ) ) $\underline{\operatorname{Hom}}^{\operatorname{nc}}(C, (A, \Delta))$ parameterizing such morphisms from a smooth curve C $C$ and show that it admits a quasi-finite non-dominant morphism to A $A$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信