{"title":"Curl curl versus Dirichlet Laplacian eigenvalues","authors":"Jonathan Rohleder","doi":"10.1112/blms.70121","DOIUrl":null,"url":null,"abstract":"<p>We provide an upper estimate for the eigenvalues of the curl curl operator on a bounded, three-dimensional Euclidean domain in terms of eigenvalues of the Dirichlet Laplacian. The result complements recent inequalities between curl curl and Neumann Laplacian eigenvalues. The curl curl eigenvalues considered here correspond to the Maxwell eigenvalue problem with constant material parameters.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2738-2747"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70121","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70121","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We provide an upper estimate for the eigenvalues of the curl curl operator on a bounded, three-dimensional Euclidean domain in terms of eigenvalues of the Dirichlet Laplacian. The result complements recent inequalities between curl curl and Neumann Laplacian eigenvalues. The curl curl eigenvalues considered here correspond to the Maxwell eigenvalue problem with constant material parameters.