Nontautological cycles on moduli spaces of smooth pointed curves

IF 0.9 3区 数学 Q2 MATHEMATICS
Dario Faro, Carolina Tamborini
{"title":"Nontautological cycles on moduli spaces of smooth pointed curves","authors":"Dario Faro,&nbsp;Carolina Tamborini","doi":"10.1112/blms.70113","DOIUrl":null,"url":null,"abstract":"<p>In recent work by Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini, it was proven that for infinitely many values of <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>, there exist nontautological algebraic cohomology classes on the moduli space <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mathcal {M}_{g,n}$</annotation>\n </semantics></math> of smooth genus <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-pointed curves. Here we show how a generalization of their technique allows to cover most of the remaining cases, proving the existence of nontautological algebraic cohomology classes on the moduli space <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mathcal {M}_{g,n}$</annotation>\n </semantics></math> for all but finitely many values of <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2630-2638"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70113","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70113","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent work by Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini, it was proven that for infinitely many values of g $g$ and n $n$ , there exist nontautological algebraic cohomology classes on the moduli space M g , n $\mathcal {M}_{g,n}$ of smooth genus g $g$ , n $n$ -pointed curves. Here we show how a generalization of their technique allows to cover most of the remaining cases, proving the existence of nontautological algebraic cohomology classes on the moduli space M g , n $\mathcal {M}_{g,n}$ for all but finitely many values of g $g$ and n $n$ .

Abstract Image

Abstract Image

Abstract Image

光滑尖曲线模空间上的非同调环
在Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini最近的工作中,证明了对于无穷多个g$ g$和n$ n$的值,在模空间M g上存在非同调代数上同类,n$ \mathcal {M}_{g,n}$的光滑格g$ g$,n $n$点曲线。在这里,我们展示了他们的技术的推广如何覆盖大多数剩余的情况,证明了模空间上非同义代数上同调类的存在,n$ \mathcal {M}_{g,n}$对于除有限多个值外的所有g$ g$和n$ n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信