旋度旋度与狄利克雷拉普拉斯特征值

IF 0.9 3区 数学 Q2 MATHEMATICS
Jonathan Rohleder
{"title":"旋度旋度与狄利克雷拉普拉斯特征值","authors":"Jonathan Rohleder","doi":"10.1112/blms.70121","DOIUrl":null,"url":null,"abstract":"<p>We provide an upper estimate for the eigenvalues of the curl curl operator on a bounded, three-dimensional Euclidean domain in terms of eigenvalues of the Dirichlet Laplacian. The result complements recent inequalities between curl curl and Neumann Laplacian eigenvalues. The curl curl eigenvalues considered here correspond to the Maxwell eigenvalue problem with constant material parameters.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2738-2747"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70121","citationCount":"0","resultStr":"{\"title\":\"Curl curl versus Dirichlet Laplacian eigenvalues\",\"authors\":\"Jonathan Rohleder\",\"doi\":\"10.1112/blms.70121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide an upper estimate for the eigenvalues of the curl curl operator on a bounded, three-dimensional Euclidean domain in terms of eigenvalues of the Dirichlet Laplacian. The result complements recent inequalities between curl curl and Neumann Laplacian eigenvalues. The curl curl eigenvalues considered here correspond to the Maxwell eigenvalue problem with constant material parameters.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2738-2747\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70121\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70121","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在有界的三维欧几里得域上,我们用狄利克雷拉普拉斯算子的特征值给出了旋度算子的特征值的上估计。结果补充了旋度旋度和诺依曼拉普拉斯特征值之间的不等式。这里考虑的旋度旋度特征值对应于恒定材料参数的麦克斯韦尔特征值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Curl curl versus Dirichlet Laplacian eigenvalues

Curl curl versus Dirichlet Laplacian eigenvalues

Curl curl versus Dirichlet Laplacian eigenvalues

We provide an upper estimate for the eigenvalues of the curl curl operator on a bounded, three-dimensional Euclidean domain in terms of eigenvalues of the Dirichlet Laplacian. The result complements recent inequalities between curl curl and Neumann Laplacian eigenvalues. The curl curl eigenvalues considered here correspond to the Maxwell eigenvalue problem with constant material parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信