{"title":"旋度旋度与狄利克雷拉普拉斯特征值","authors":"Jonathan Rohleder","doi":"10.1112/blms.70121","DOIUrl":null,"url":null,"abstract":"<p>We provide an upper estimate for the eigenvalues of the curl curl operator on a bounded, three-dimensional Euclidean domain in terms of eigenvalues of the Dirichlet Laplacian. The result complements recent inequalities between curl curl and Neumann Laplacian eigenvalues. The curl curl eigenvalues considered here correspond to the Maxwell eigenvalue problem with constant material parameters.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2738-2747"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70121","citationCount":"0","resultStr":"{\"title\":\"Curl curl versus Dirichlet Laplacian eigenvalues\",\"authors\":\"Jonathan Rohleder\",\"doi\":\"10.1112/blms.70121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide an upper estimate for the eigenvalues of the curl curl operator on a bounded, three-dimensional Euclidean domain in terms of eigenvalues of the Dirichlet Laplacian. The result complements recent inequalities between curl curl and Neumann Laplacian eigenvalues. The curl curl eigenvalues considered here correspond to the Maxwell eigenvalue problem with constant material parameters.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2738-2747\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70121\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70121\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70121","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We provide an upper estimate for the eigenvalues of the curl curl operator on a bounded, three-dimensional Euclidean domain in terms of eigenvalues of the Dirichlet Laplacian. The result complements recent inequalities between curl curl and Neumann Laplacian eigenvalues. The curl curl eigenvalues considered here correspond to the Maxwell eigenvalue problem with constant material parameters.