Thin hyperbolic reflection groups

IF 0.9 3区 数学 Q2 MATHEMATICS
Nikolay Bogachev, Alexander Kolpakov
{"title":"Thin hyperbolic reflection groups","authors":"Nikolay Bogachev,&nbsp;Alexander Kolpakov","doi":"10.1112/blms.70108","DOIUrl":null,"url":null,"abstract":"<p>We study a family of Zariski dense finitely generated discrete subgroups of <span></span><math>\n <semantics>\n <mrow>\n <mi>Isom</mi>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Isom}(\\mathbb {H}^d)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d \\geqslant 2$</annotation>\n </semantics></math>, defined by the following property: any group in this family contains at least one reflection in a hyperplane. As an application, we obtain a general description of all thin hyperbolic reflection groups. In particular, we show that the Vinberg algorithm applied to a nonreflective Lorentzian lattice gives rise to an infinite sequence of thin reflection subgroups in <span></span><math>\n <semantics>\n <mrow>\n <mi>Isom</mi>\n <mo>(</mo>\n <msup>\n <mi>H</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{Isom}(\\mathbb {H}^d)$</annotation>\n </semantics></math>, for any <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$d \\geqslant 2$</annotation>\n </semantics></math>. Moreover, every such group is a subgroup of a group produced by the Vinberg algorithm applied to a Lorentzian lattice independently on the latter being reflective. As a consequence, all thin hyperbolic reflection groups are enumerable.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2498-2508"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70108","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study a family of Zariski dense finitely generated discrete subgroups of Isom ( H d ) $\mathrm{Isom}(\mathbb {H}^d)$ , d 2 $d \geqslant 2$ , defined by the following property: any group in this family contains at least one reflection in a hyperplane. As an application, we obtain a general description of all thin hyperbolic reflection groups. In particular, we show that the Vinberg algorithm applied to a nonreflective Lorentzian lattice gives rise to an infinite sequence of thin reflection subgroups in Isom ( H d ) $\mathrm{Isom}(\mathbb {H}^d)$ , for any d 2 $d \geqslant 2$ . Moreover, every such group is a subgroup of a group produced by the Vinberg algorithm applied to a Lorentzian lattice independently on the latter being reflective. As a consequence, all thin hyperbolic reflection groups are enumerable.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

薄双曲反射群
我们研究了Isom (H d) $\mathrm{Isom}(\mathbb {H}^d)$的一个Zariski密集有限生成离散子群族。D小于或等于2 $d \geqslant 2$,由以下属性定义:这个家族中的任何组在超平面中至少包含一个反射。作为应用,我们得到了所有薄双曲反射群的一般描述。特别地,我们证明了将Vinberg算法应用于非反射洛伦兹晶格会在Isom (H d) $\mathrm{Isom}(\mathbb {H}^d)$中产生无限序列的薄反射子群。对于任何d小于2 $d \geqslant 2$。而且,每一个这样的群都是由单独应用于洛伦兹格的Vinberg算法产生的群的子群。因此,所有薄双曲反射群都是可枚举的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信