On the finiteness of maps into simple abelian varieties satisfying certain tangency conditions

IF 0.9 3区 数学 Q2 MATHEMATICS
Finn Bartsch
{"title":"On the finiteness of maps into simple abelian varieties satisfying certain tangency conditions","authors":"Finn Bartsch","doi":"10.1112/blms.70119","DOIUrl":null,"url":null,"abstract":"<p>We show that given a simple abelian variety <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> and a normal variety <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> defined over a finitely generated field <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> of characteristic zero, the set of non-constant morphisms <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>→</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$V \\rightarrow A$</annotation>\n </semantics></math> satisfying certain tangency conditions imposed by a Campana orbifold divisor <span></span><math>\n <semantics>\n <mi>Δ</mi>\n <annotation>$\\Delta$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is finite. To do so, we study the geometry of the scheme <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <munder>\n <mo>Hom</mo>\n <mo>̲</mo>\n </munder>\n <mo>nc</mo>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>,</mo>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>,</mo>\n <mi>Δ</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\underline{\\operatorname{Hom}}^{\\operatorname{nc}}(C, (A, \\Delta))$</annotation>\n </semantics></math> parameterizing such morphisms from a smooth curve <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$C$</annotation>\n </semantics></math> and show that it admits a quasi-finite non-dominant morphism to <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2723-2730"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70119","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that given a simple abelian variety A $A$ and a normal variety V $V$ defined over a finitely generated field K $K$ of characteristic zero, the set of non-constant morphisms V A $V \rightarrow A$ satisfying certain tangency conditions imposed by a Campana orbifold divisor Δ $\Delta$ on A $A$ is finite. To do so, we study the geometry of the scheme Hom ̲ nc ( C , ( A , Δ ) ) $\underline{\operatorname{Hom}}^{\operatorname{nc}}(C, (A, \Delta))$ parameterizing such morphisms from a smooth curve C $C$ and show that it admits a quasi-finite non-dominant morphism to A $A$ .

Abstract Image

Abstract Image

满足一定相切条件的简单阿贝尔变换映射的有限性
我们证明了给定一个简单的阿贝尔变量a $A$和一个定义在特征为零的有限生成域K $K$上的正常变量V $V$,在A $A$上满足Campana轨道除数Δ $\Delta$所施加的相切条件的非常态射集合V→A $V \rightarrow A$是有限的。为此,我们研究了hom_no_nc (C, (A,Δ)) $\underline{\operatorname{Hom}}^{\operatorname{nc}}(C, (A, \Delta))$从光滑曲线C $C$参数化了这样的态射,并表明它承认a $A$的拟有限非显性态射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信