{"title":"类型A$ A$ Hecke代数的野块是严格的野块","authors":"Liron Speyer","doi":"10.1112/blms.70115","DOIUrl":null,"url":null,"abstract":"<p>We prove that all wild blocks of type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> Hecke algebras with quantum characteristic <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$e \\geqslant 3$</annotation>\n </semantics></math> — that is, blocks of weight at least 2 — are <i>strictly</i> wild, with the possible exception of the weight 2 Rouquier block for <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$e = 3$</annotation>\n </semantics></math>. As a corollary, we show that for <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$e \\geqslant 3$</annotation>\n </semantics></math>, all wild blocks of the <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>-Schur algebras are strictly wild, without exception.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2658-2679"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70115","citationCount":"0","resultStr":"{\"title\":\"Wild blocks of type \\n \\n A\\n $A$\\n Hecke algebras are strictly wild\",\"authors\":\"Liron Speyer\",\"doi\":\"10.1112/blms.70115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that all wild blocks of type <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> Hecke algebras with quantum characteristic <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$e \\\\geqslant 3$</annotation>\\n </semantics></math> — that is, blocks of weight at least 2 — are <i>strictly</i> wild, with the possible exception of the weight 2 Rouquier block for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$e = 3$</annotation>\\n </semantics></math>. As a corollary, we show that for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$e \\\\geqslant 3$</annotation>\\n </semantics></math>, all wild blocks of the <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>-Schur algebras are strictly wild, without exception.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2658-2679\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70115\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70115\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70115","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Wild blocks of type
A
$A$
Hecke algebras are strictly wild
We prove that all wild blocks of type Hecke algebras with quantum characteristic — that is, blocks of weight at least 2 — are strictly wild, with the possible exception of the weight 2 Rouquier block for . As a corollary, we show that for , all wild blocks of the -Schur algebras are strictly wild, without exception.