Wild blocks of type A $A$ Hecke algebras are strictly wild

IF 0.9 3区 数学 Q2 MATHEMATICS
Liron Speyer
{"title":"Wild blocks of type \n \n A\n $A$\n Hecke algebras are strictly wild","authors":"Liron Speyer","doi":"10.1112/blms.70115","DOIUrl":null,"url":null,"abstract":"<p>We prove that all wild blocks of type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> Hecke algebras with quantum characteristic <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$e \\geqslant 3$</annotation>\n </semantics></math> — that is, blocks of weight at least 2 — are <i>strictly</i> wild, with the possible exception of the weight 2 Rouquier block for <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$e = 3$</annotation>\n </semantics></math>. As a corollary, we show that for <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$e \\geqslant 3$</annotation>\n </semantics></math>, all wild blocks of the <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>-Schur algebras are strictly wild, without exception.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2658-2679"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70115","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70115","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that all wild blocks of type A $A$ Hecke algebras with quantum characteristic e 3 $e \geqslant 3$ — that is, blocks of weight at least 2 — are strictly wild, with the possible exception of the weight 2 Rouquier block for e = 3 $e = 3$ . As a corollary, we show that for e 3 $e \geqslant 3$ , all wild blocks of the q $q$ -Schur algebras are strictly wild, without exception.

Abstract Image

Abstract Image

Abstract Image

类型A$ A$ Hecke代数的野块是严格的野块
我们证明A型的所有野生块$A$具有量子特征e大于或等于3 $e \geqslant 3$的Hecke代数-即重量至少为2 -的块是严格野生的,可能除了权重2 Rouquier块为e = 3 $e = 3$。作为推论,我们表明对于e小于3 $e \geqslant 3$, q $q$ -Schur代数的所有野生块都是严格野生的,没有例外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信