{"title":"光滑尖曲线模空间上的非同调环","authors":"Dario Faro, Carolina Tamborini","doi":"10.1112/blms.70113","DOIUrl":null,"url":null,"abstract":"<p>In recent work by Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini, it was proven that for infinitely many values of <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>, there exist nontautological algebraic cohomology classes on the moduli space <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mathcal {M}_{g,n}$</annotation>\n </semantics></math> of smooth genus <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-pointed curves. Here we show how a generalization of their technique allows to cover most of the remaining cases, proving the existence of nontautological algebraic cohomology classes on the moduli space <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mathcal {M}_{g,n}$</annotation>\n </semantics></math> for all but finitely many values of <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2630-2638"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70113","citationCount":"0","resultStr":"{\"title\":\"Nontautological cycles on moduli spaces of smooth pointed curves\",\"authors\":\"Dario Faro, Carolina Tamborini\",\"doi\":\"10.1112/blms.70113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent work by Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini, it was proven that for infinitely many values of <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>, there exist nontautological algebraic cohomology classes on the moduli space <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\mathcal {M}_{g,n}$</annotation>\\n </semantics></math> of smooth genus <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-pointed curves. Here we show how a generalization of their technique allows to cover most of the remaining cases, proving the existence of nontautological algebraic cohomology classes on the moduli space <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\mathcal {M}_{g,n}$</annotation>\\n </semantics></math> for all but finitely many values of <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2630-2638\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70113\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70113","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Nontautological cycles on moduli spaces of smooth pointed curves
In recent work by Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini, it was proven that for infinitely many values of and , there exist nontautological algebraic cohomology classes on the moduli space of smooth genus , -pointed curves. Here we show how a generalization of their technique allows to cover most of the remaining cases, proving the existence of nontautological algebraic cohomology classes on the moduli space for all but finitely many values of and .