光滑尖曲线模空间上的非同调环

IF 0.9 3区 数学 Q2 MATHEMATICS
Dario Faro, Carolina Tamborini
{"title":"光滑尖曲线模空间上的非同调环","authors":"Dario Faro,&nbsp;Carolina Tamborini","doi":"10.1112/blms.70113","DOIUrl":null,"url":null,"abstract":"<p>In recent work by Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini, it was proven that for infinitely many values of <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>, there exist nontautological algebraic cohomology classes on the moduli space <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mathcal {M}_{g,n}$</annotation>\n </semantics></math> of smooth genus <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-pointed curves. Here we show how a generalization of their technique allows to cover most of the remaining cases, proving the existence of nontautological algebraic cohomology classes on the moduli space <span></span><math>\n <semantics>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>g</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n </msub>\n <annotation>$\\mathcal {M}_{g,n}$</annotation>\n </semantics></math> for all but finitely many values of <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2630-2638"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70113","citationCount":"0","resultStr":"{\"title\":\"Nontautological cycles on moduli spaces of smooth pointed curves\",\"authors\":\"Dario Faro,&nbsp;Carolina Tamborini\",\"doi\":\"10.1112/blms.70113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent work by Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini, it was proven that for infinitely many values of <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>, there exist nontautological algebraic cohomology classes on the moduli space <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\mathcal {M}_{g,n}$</annotation>\\n </semantics></math> of smooth genus <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-pointed curves. Here we show how a generalization of their technique allows to cover most of the remaining cases, proving the existence of nontautological algebraic cohomology classes on the moduli space <span></span><math>\\n <semantics>\\n <msub>\\n <mi>M</mi>\\n <mrow>\\n <mi>g</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n <annotation>$\\\\mathcal {M}_{g,n}$</annotation>\\n </semantics></math> for all but finitely many values of <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2630-2638\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70113\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70113\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70113","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini最近的工作中,证明了对于无穷多个g$ g$和n$ n$的值,在模空间M g上存在非同调代数上同类,n$ \mathcal {M}_{g,n}$的光滑格g$ g$,n $n$点曲线。在这里,我们展示了他们的技术的推广如何覆盖大多数剩余的情况,证明了模空间上非同义代数上同调类的存在,n$ \mathcal {M}_{g,n}$对于除有限多个值外的所有g$ g$和n$ n$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nontautological cycles on moduli spaces of smooth pointed curves

Nontautological cycles on moduli spaces of smooth pointed curves

Nontautological cycles on moduli spaces of smooth pointed curves

Nontautological cycles on moduli spaces of smooth pointed curves

In recent work by Arena, Canning, Clader, Haburcak, Li, Mok, and Tamborini, it was proven that for infinitely many values of g $g$ and n $n$ , there exist nontautological algebraic cohomology classes on the moduli space M g , n $\mathcal {M}_{g,n}$ of smooth genus g $g$ , n $n$ -pointed curves. Here we show how a generalization of their technique allows to cover most of the remaining cases, proving the existence of nontautological algebraic cohomology classes on the moduli space M g , n $\mathcal {M}_{g,n}$ for all but finitely many values of g $g$ and n $n$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信