{"title":"On the stack of 0-dimensional coherent sheaves: Motivic aspects","authors":"Barbara Fantechi, Andrea T. Ricolfi","doi":"10.1112/blms.70096","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a variety. In this survey, we study (decompositions of) the motivic class, in the Grothendieck ring of stacks, of the stack <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>o</mi>\n <msup>\n <mi>h</mi>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {C}\\hspace{-2.5pt}{o}\\hspace{-1.99997pt}{h}^n(X)$</annotation>\n </semantics></math> of 0-dimensional coherent sheaves of length <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>. To do so, we review the construction of the support map <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>o</mi>\n <msup>\n <mi>h</mi>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <msup>\n <mo>Sym</mo>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {C}\\hspace{-2.5pt}{o}\\hspace{-1.99997pt}{h}^n(X) \\rightarrow \\operatorname{Sym}^n(X)$</annotation>\n </semantics></math> to the symmetric product and we prove that, for any closed point <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mi>X</mi>\n </mrow>\n <annotation>$p \\in X$</annotation>\n </semantics></math>, the motive of the punctual stack <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mi>o</mi>\n <msup>\n <mi>h</mi>\n <mi>n</mi>\n </msup>\n <msub>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <mi>p</mi>\n </msub>\n </mrow>\n <annotation>$\\mathcal {C}\\hspace{-2.5pt}{o}\\hspace{-1.99997pt}{h}^n(X)_p$</annotation>\n </semantics></math> parametrising sheaves supported at <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> only depends on a formal neighbourhood of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>. We perform the same analysis for the Quot-to-Chow morphism <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>Quot</mo>\n <mi>X</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>E</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>→</mo>\n <msup>\n <mo>Sym</mo>\n <mi>n</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\operatorname{Quot}_X({\\mathcal {E}},n) \\rightarrow \\operatorname{Sym}^n(X)$</annotation>\n </semantics></math>, for a fixed sheaf <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mo>∈</mo>\n <mo>Coh</mo>\n <mi>X</mi>\n </mrow>\n <annotation>${\\mathcal {E}}\\in \\operatorname{Coh}X$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1607-1649"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70096","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70096","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a variety. In this survey, we study (decompositions of) the motivic class, in the Grothendieck ring of stacks, of the stack of 0-dimensional coherent sheaves of length on . To do so, we review the construction of the support map to the symmetric product and we prove that, for any closed point , the motive of the punctual stack parametrising sheaves supported at only depends on a formal neighbourhood of . We perform the same analysis for the Quot-to-Chow morphism , for a fixed sheaf .