弱等级理想族的多样性

IF 0.9 3区 数学 Q2 MATHEMATICS
Parangama Sarkar
{"title":"弱等级理想族的多样性","authors":"Parangama Sarkar","doi":"10.1112/blms.70099","DOIUrl":null,"url":null,"abstract":"<p>In this article, we extend the notion of multiplicity for weakly graded families of ideals which are bounded below linearly. In particular, we show that the limit <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>W</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <mo>:</mo>\n <mo>=</mo>\n <munder>\n <mi>lim</mi>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n </munder>\n <mi>d</mi>\n <mo>!</mo>\n <mfrac>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>/</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <msup>\n <mi>n</mi>\n <mi>d</mi>\n </msup>\n </mfrac>\n </mrow>\n <annotation>$ e_W(\\mathcal {I}):=\\lim \\limits _{n\\rightarrow \\infty }d!\\frac{\\ell _R(R/I_n)}{n^d}$</annotation>\n </semantics></math> exists where <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>=</mo>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\mathcal {I}=\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is a bounded below linearly weakly graded family of ideals in a Noetherian local ring <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\mathfrak {m})$</annotation>\n </semantics></math> of dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d\\geqslant 1$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>N</mi>\n <mrow>\n <mo>(</mo>\n <mover>\n <mi>R</mi>\n <mo>̂</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n <mo>&lt;</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$\\dim (N(\\hat{R}))&lt;d$</annotation>\n </semantics></math>. Furthermore, we prove that “volume = multiplicity” formula and Minkowski inequality hold for such families of ideals. We explore some properties of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>W</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>J</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$e_W(\\mathcal {J})$</annotation>\n </semantics></math> for weakly graded families of ideals of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>J</mi>\n <mo>=</mo>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>:</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$\\mathcal {J}=\\lbrace (I_n:K)\\rbrace$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-primary graded family of ideals. We provide a necessary and sufficient condition for the equality in Minkowski inequality for the weakly graded families of ideals of the form <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>:</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace (I_n:K)\\rbrace$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is a bounded filtration. Moreover, we generalize a result of Rees characterizing the inclusion of ideals with the same multiplicities for the above families of ideals. Finally, we investigate the asymptotic behavior of the length function <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>H</mi>\n <mi>m</mi>\n <mn>0</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>:</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\ell _R(H_{\\mathfrak {m}}^0(R/(I_n:K)))$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is a filtration of ideals (not necessarily <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-primary).</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2354-2371"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicities of weakly graded families of ideals\",\"authors\":\"Parangama Sarkar\",\"doi\":\"10.1112/blms.70099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we extend the notion of multiplicity for weakly graded families of ideals which are bounded below linearly. In particular, we show that the limit <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n <mi>W</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>:</mo>\\n <mo>=</mo>\\n <munder>\\n <mi>lim</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n </munder>\\n <mi>d</mi>\\n <mo>!</mo>\\n <mfrac>\\n <mrow>\\n <msub>\\n <mi>ℓ</mi>\\n <mi>R</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <msup>\\n <mi>n</mi>\\n <mi>d</mi>\\n </msup>\\n </mfrac>\\n </mrow>\\n <annotation>$ e_W(\\\\mathcal {I}):=\\\\lim \\\\limits _{n\\\\rightarrow \\\\infty }d!\\\\frac{\\\\ell _R(R/I_n)}{n^d}$</annotation>\\n </semantics></math> exists where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <mo>=</mo>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {I}=\\\\lbrace I_n\\\\rbrace$</annotation>\\n </semantics></math> is a bounded below linearly weakly graded family of ideals in a Noetherian local ring <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(R,\\\\mathfrak {m})$</annotation>\\n </semantics></math> of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$d\\\\geqslant 1$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mrow>\\n <mo>(</mo>\\n <mover>\\n <mi>R</mi>\\n <mo>̂</mo>\\n </mover>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n <mo>&lt;</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$\\\\dim (N(\\\\hat{R}))&lt;d$</annotation>\\n </semantics></math>. Furthermore, we prove that “volume = multiplicity” formula and Minkowski inequality hold for such families of ideals. We explore some properties of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n <mi>W</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>J</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$e_W(\\\\mathcal {J})$</annotation>\\n </semantics></math> for weakly graded families of ideals of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>J</mi>\\n <mo>=</mo>\\n <mo>{</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>:</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {J}=\\\\lbrace (I_n:K)\\\\rbrace$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace I_n\\\\rbrace$</annotation>\\n </semantics></math> is an <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>-primary graded family of ideals. We provide a necessary and sufficient condition for the equality in Minkowski inequality for the weakly graded families of ideals of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>:</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace (I_n:K)\\\\rbrace$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace I_n\\\\rbrace$</annotation>\\n </semantics></math> is a bounded filtration. Moreover, we generalize a result of Rees characterizing the inclusion of ideals with the same multiplicities for the above families of ideals. Finally, we investigate the asymptotic behavior of the length function <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ℓ</mi>\\n <mi>R</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msubsup>\\n <mi>H</mi>\\n <mi>m</mi>\\n <mn>0</mn>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>/</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>:</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\ell _R(H_{\\\\mathfrak {m}}^0(R/(I_n:K)))$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace I_n\\\\rbrace$</annotation>\\n </semantics></math> is a filtration of ideals (not necessarily <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>-primary).</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2354-2371\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70099\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70099","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们推广了线性有界的弱分级理想族的多重性概念。特别地,我们证明了极限e W (I):= lim n→∞d !R (R / I n) n d$ e_W(\mathcal {I}):=\lim \limits _{n\rightarrow \infty }d!\frac{\ell _R(R/I_n)}{n^d}$存在其中{I = I n}$\mathcal {I}=\lbrace I_n\rbrace$是noether局部环(R,m) $(R,\mathfrak {m})$尺寸d小于1 $d\geqslant 1$与dim (N (R)) &lt;D $\dim (N(\hat{R}))&lt;d$。进一步证明了“体积=多重性”公式和Minkowski不等式对这类理想族成立。对于形式为J =()的弱分级理想族,我们研究了e W (J) $e_W(\mathcal {J})$的一些性质。我想{:K) }$\mathcal {J}=\lbrace (I_n:K)\rbrace$其中{I n}$\lbrace I_n\rbrace$是一个m $\mathfrak {m}$ -初级等级的理想家族。对于形式为{(I n)的弱分级理想族,给出Minkowski不等式中相等的充分}必要条件。K) $\lbrace (I_n:K)\rbrace$其中{I n}$\lbrace I_n\rbrace$是有界过滤。此外,我们推广了Rees的结果,该结果描述了上述理想族具有相同多重性的理想包含。 最后,研究了长度函数R (H) m 0 (R /()的渐近性质。我想:K)))$ \ well _R(H_{\mathfrak {m}}^0(R/(I_n:K)))$其中{I n} $\ I_n\rbrace$是理想的过滤(不是必须m $\mathfrak {m}$ -primary)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multiplicities of weakly graded families of ideals

Multiplicities of weakly graded families of ideals

Multiplicities of weakly graded families of ideals

Multiplicities of weakly graded families of ideals

In this article, we extend the notion of multiplicity for weakly graded families of ideals which are bounded below linearly. In particular, we show that the limit e W ( I ) : = lim n d ! R ( R / I n ) n d $ e_W(\mathcal {I}):=\lim \limits _{n\rightarrow \infty }d!\frac{\ell _R(R/I_n)}{n^d}$ exists where I = { I n } $\mathcal {I}=\lbrace I_n\rbrace$ is a bounded below linearly weakly graded family of ideals in a Noetherian local ring ( R , m ) $(R,\mathfrak {m})$ of dimension d 1 $d\geqslant 1$ with dim ( N ( R ̂ ) ) < d $\dim (N(\hat{R}))<d$ . Furthermore, we prove that “volume = multiplicity” formula and Minkowski inequality hold for such families of ideals. We explore some properties of e W ( J ) $e_W(\mathcal {J})$ for weakly graded families of ideals of the form J = { ( I n : K ) } $\mathcal {J}=\lbrace (I_n:K)\rbrace$ where { I n } $\lbrace I_n\rbrace$ is an m $\mathfrak {m}$ -primary graded family of ideals. We provide a necessary and sufficient condition for the equality in Minkowski inequality for the weakly graded families of ideals of the form { ( I n : K ) } $\lbrace (I_n:K)\rbrace$ where { I n } $\lbrace I_n\rbrace$ is a bounded filtration. Moreover, we generalize a result of Rees characterizing the inclusion of ideals with the same multiplicities for the above families of ideals. Finally, we investigate the asymptotic behavior of the length function R ( H m 0 ( R / ( I n : K ) ) ) $\ell _R(H_{\mathfrak {m}}^0(R/(I_n:K)))$ where { I n } $\lbrace I_n\rbrace$ is a filtration of ideals (not necessarily m $\mathfrak {m}$ -primary).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信