{"title":"弱等级理想族的多样性","authors":"Parangama Sarkar","doi":"10.1112/blms.70099","DOIUrl":null,"url":null,"abstract":"<p>In this article, we extend the notion of multiplicity for weakly graded families of ideals which are bounded below linearly. In particular, we show that the limit <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>W</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <mo>:</mo>\n <mo>=</mo>\n <munder>\n <mi>lim</mi>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n </munder>\n <mi>d</mi>\n <mo>!</mo>\n <mfrac>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>/</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <msup>\n <mi>n</mi>\n <mi>d</mi>\n </msup>\n </mfrac>\n </mrow>\n <annotation>$ e_W(\\mathcal {I}):=\\lim \\limits _{n\\rightarrow \\infty }d!\\frac{\\ell _R(R/I_n)}{n^d}$</annotation>\n </semantics></math> exists where <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>=</mo>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\mathcal {I}=\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is a bounded below linearly weakly graded family of ideals in a Noetherian local ring <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\mathfrak {m})$</annotation>\n </semantics></math> of dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d\\geqslant 1$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>N</mi>\n <mrow>\n <mo>(</mo>\n <mover>\n <mi>R</mi>\n <mo>̂</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n <mo><</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$\\dim (N(\\hat{R}))<d$</annotation>\n </semantics></math>. Furthermore, we prove that “volume = multiplicity” formula and Minkowski inequality hold for such families of ideals. We explore some properties of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>W</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>J</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$e_W(\\mathcal {J})$</annotation>\n </semantics></math> for weakly graded families of ideals of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>J</mi>\n <mo>=</mo>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>:</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$\\mathcal {J}=\\lbrace (I_n:K)\\rbrace$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-primary graded family of ideals. We provide a necessary and sufficient condition for the equality in Minkowski inequality for the weakly graded families of ideals of the form <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>:</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace (I_n:K)\\rbrace$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is a bounded filtration. Moreover, we generalize a result of Rees characterizing the inclusion of ideals with the same multiplicities for the above families of ideals. Finally, we investigate the asymptotic behavior of the length function <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>H</mi>\n <mi>m</mi>\n <mn>0</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>:</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\ell _R(H_{\\mathfrak {m}}^0(R/(I_n:K)))$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is a filtration of ideals (not necessarily <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-primary).</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2354-2371"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiplicities of weakly graded families of ideals\",\"authors\":\"Parangama Sarkar\",\"doi\":\"10.1112/blms.70099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we extend the notion of multiplicity for weakly graded families of ideals which are bounded below linearly. In particular, we show that the limit <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n <mi>W</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>I</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>:</mo>\\n <mo>=</mo>\\n <munder>\\n <mi>lim</mi>\\n <mrow>\\n <mi>n</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n </munder>\\n <mi>d</mi>\\n <mo>!</mo>\\n <mfrac>\\n <mrow>\\n <msub>\\n <mi>ℓ</mi>\\n <mi>R</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>/</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <msup>\\n <mi>n</mi>\\n <mi>d</mi>\\n </msup>\\n </mfrac>\\n </mrow>\\n <annotation>$ e_W(\\\\mathcal {I}):=\\\\lim \\\\limits _{n\\\\rightarrow \\\\infty }d!\\\\frac{\\\\ell _R(R/I_n)}{n^d}$</annotation>\\n </semantics></math> exists where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>I</mi>\\n <mo>=</mo>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {I}=\\\\lbrace I_n\\\\rbrace$</annotation>\\n </semantics></math> is a bounded below linearly weakly graded family of ideals in a Noetherian local ring <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(R,\\\\mathfrak {m})$</annotation>\\n </semantics></math> of dimension <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>⩾</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$d\\\\geqslant 1$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mrow>\\n <mo>(</mo>\\n <mover>\\n <mi>R</mi>\\n <mo>̂</mo>\\n </mover>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n <mo><</mo>\\n <mi>d</mi>\\n </mrow>\\n <annotation>$\\\\dim (N(\\\\hat{R}))<d$</annotation>\\n </semantics></math>. Furthermore, we prove that “volume = multiplicity” formula and Minkowski inequality hold for such families of ideals. We explore some properties of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>e</mi>\\n <mi>W</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>J</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$e_W(\\\\mathcal {J})$</annotation>\\n </semantics></math> for weakly graded families of ideals of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>J</mi>\\n <mo>=</mo>\\n <mo>{</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>:</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\mathcal {J}=\\\\lbrace (I_n:K)\\\\rbrace$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace I_n\\\\rbrace$</annotation>\\n </semantics></math> is an <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>-primary graded family of ideals. We provide a necessary and sufficient condition for the equality in Minkowski inequality for the weakly graded families of ideals of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>:</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace (I_n:K)\\\\rbrace$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace I_n\\\\rbrace$</annotation>\\n </semantics></math> is a bounded filtration. Moreover, we generalize a result of Rees characterizing the inclusion of ideals with the same multiplicities for the above families of ideals. Finally, we investigate the asymptotic behavior of the length function <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>ℓ</mi>\\n <mi>R</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msubsup>\\n <mi>H</mi>\\n <mi>m</mi>\\n <mn>0</mn>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>R</mi>\\n <mo>/</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>:</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\ell _R(H_{\\\\mathfrak {m}}^0(R/(I_n:K)))$</annotation>\\n </semantics></math> where <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>I</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <annotation>$\\\\lbrace I_n\\\\rbrace$</annotation>\\n </semantics></math> is a filtration of ideals (not necessarily <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$\\\\mathfrak {m}$</annotation>\\n </semantics></math>-primary).</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2354-2371\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70099\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70099","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们推广了线性有界的弱分级理想族的多重性概念。特别地,我们证明了极限e W (I):= lim n→∞d !R (R / I n) n d$ e_W(\mathcal {I}):=\lim \limits _{n\rightarrow \infty }d!\frac{\ell _R(R/I_n)}{n^d}$存在其中{I = I n}$\mathcal {I}=\lbrace I_n\rbrace$是noether局部环(R,m) $(R,\mathfrak {m})$尺寸d小于1 $d\geqslant 1$与dim (N (R)) &lt;D $\dim (N(\hat{R}))<d$。进一步证明了“体积=多重性”公式和Minkowski不等式对这类理想族成立。对于形式为J =()的弱分级理想族,我们研究了e W (J) $e_W(\mathcal {J})$的一些性质。我想{:K) }$\mathcal {J}=\lbrace (I_n:K)\rbrace$其中{I n}$\lbrace I_n\rbrace$是一个m $\mathfrak {m}$ -初级等级的理想家族。对于形式为{(I n)的弱分级理想族,给出Minkowski不等式中相等的充分}必要条件。K) $\lbrace (I_n:K)\rbrace$其中{I n}$\lbrace I_n\rbrace$是有界过滤。此外,我们推广了Rees的结果,该结果描述了上述理想族具有相同多重性的理想包含。 最后,研究了长度函数R (H) m 0 (R /()的渐近性质。我想:K)))$ \ well _R(H_{\mathfrak {m}}^0(R/(I_n:K)))$其中{I n} $\ I_n\rbrace$是理想的过滤(不是必须m $\mathfrak {m}$ -primary)。
Multiplicities of weakly graded families of ideals
In this article, we extend the notion of multiplicity for weakly graded families of ideals which are bounded below linearly. In particular, we show that the limit exists where is a bounded below linearly weakly graded family of ideals in a Noetherian local ring of dimension with . Furthermore, we prove that “volume = multiplicity” formula and Minkowski inequality hold for such families of ideals. We explore some properties of for weakly graded families of ideals of the form where is an -primary graded family of ideals. We provide a necessary and sufficient condition for the equality in Minkowski inequality for the weakly graded families of ideals of the form where is a bounded filtration. Moreover, we generalize a result of Rees characterizing the inclusion of ideals with the same multiplicities for the above families of ideals. Finally, we investigate the asymptotic behavior of the length function where is a filtration of ideals (not necessarily -primary).