Multiplicities of weakly graded families of ideals

IF 0.9 3区 数学 Q2 MATHEMATICS
Parangama Sarkar
{"title":"Multiplicities of weakly graded families of ideals","authors":"Parangama Sarkar","doi":"10.1112/blms.70099","DOIUrl":null,"url":null,"abstract":"<p>In this article, we extend the notion of multiplicity for weakly graded families of ideals which are bounded below linearly. In particular, we show that the limit <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>W</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>I</mi>\n <mo>)</mo>\n </mrow>\n <mo>:</mo>\n <mo>=</mo>\n <munder>\n <mi>lim</mi>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n </munder>\n <mi>d</mi>\n <mo>!</mo>\n <mfrac>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>/</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <msup>\n <mi>n</mi>\n <mi>d</mi>\n </msup>\n </mfrac>\n </mrow>\n <annotation>$ e_W(\\mathcal {I}):=\\lim \\limits _{n\\rightarrow \\infty }d!\\frac{\\ell _R(R/I_n)}{n^d}$</annotation>\n </semantics></math> exists where <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>=</mo>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\mathcal {I}=\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is a bounded below linearly weakly graded family of ideals in a Noetherian local ring <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(R,\\mathfrak {m})$</annotation>\n </semantics></math> of dimension <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$d\\geqslant 1$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <mo>(</mo>\n <mi>N</mi>\n <mrow>\n <mo>(</mo>\n <mover>\n <mi>R</mi>\n <mo>̂</mo>\n </mover>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n <mo>&lt;</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$\\dim (N(\\hat{R}))&lt;d$</annotation>\n </semantics></math>. Furthermore, we prove that “volume = multiplicity” formula and Minkowski inequality hold for such families of ideals. We explore some properties of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>e</mi>\n <mi>W</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>J</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$e_W(\\mathcal {J})$</annotation>\n </semantics></math> for weakly graded families of ideals of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>J</mi>\n <mo>=</mo>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>:</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$\\mathcal {J}=\\lbrace (I_n:K)\\rbrace$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is an <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-primary graded family of ideals. We provide a necessary and sufficient condition for the equality in Minkowski inequality for the weakly graded families of ideals of the form <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>:</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace (I_n:K)\\rbrace$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is a bounded filtration. Moreover, we generalize a result of Rees characterizing the inclusion of ideals with the same multiplicities for the above families of ideals. Finally, we investigate the asymptotic behavior of the length function <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mi>R</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msubsup>\n <mi>H</mi>\n <mi>m</mi>\n <mn>0</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>R</mi>\n <mo>/</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>:</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\ell _R(H_{\\mathfrak {m}}^0(R/(I_n:K)))$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>I</mi>\n <mi>n</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace I_n\\rbrace$</annotation>\n </semantics></math> is a filtration of ideals (not necessarily <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$\\mathfrak {m}$</annotation>\n </semantics></math>-primary).</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2354-2371"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70099","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we extend the notion of multiplicity for weakly graded families of ideals which are bounded below linearly. In particular, we show that the limit e W ( I ) : = lim n d ! R ( R / I n ) n d $ e_W(\mathcal {I}):=\lim \limits _{n\rightarrow \infty }d!\frac{\ell _R(R/I_n)}{n^d}$ exists where I = { I n } $\mathcal {I}=\lbrace I_n\rbrace$ is a bounded below linearly weakly graded family of ideals in a Noetherian local ring ( R , m ) $(R,\mathfrak {m})$ of dimension d 1 $d\geqslant 1$ with dim ( N ( R ̂ ) ) < d $\dim (N(\hat{R}))<d$ . Furthermore, we prove that “volume = multiplicity” formula and Minkowski inequality hold for such families of ideals. We explore some properties of e W ( J ) $e_W(\mathcal {J})$ for weakly graded families of ideals of the form J = { ( I n : K ) } $\mathcal {J}=\lbrace (I_n:K)\rbrace$ where { I n } $\lbrace I_n\rbrace$ is an m $\mathfrak {m}$ -primary graded family of ideals. We provide a necessary and sufficient condition for the equality in Minkowski inequality for the weakly graded families of ideals of the form { ( I n : K ) } $\lbrace (I_n:K)\rbrace$ where { I n } $\lbrace I_n\rbrace$ is a bounded filtration. Moreover, we generalize a result of Rees characterizing the inclusion of ideals with the same multiplicities for the above families of ideals. Finally, we investigate the asymptotic behavior of the length function R ( H m 0 ( R / ( I n : K ) ) ) $\ell _R(H_{\mathfrak {m}}^0(R/(I_n:K)))$ where { I n } $\lbrace I_n\rbrace$ is a filtration of ideals (not necessarily m $\mathfrak {m}$ -primary).

Abstract Image

Abstract Image

Abstract Image

弱等级理想族的多样性
在本文中,我们推广了线性有界的弱分级理想族的多重性概念。特别地,我们证明了极限e W (I):= lim n→∞d !R (R / I n) n d$ e_W(\mathcal {I}):=\lim \limits _{n\rightarrow \infty }d!\frac{\ell _R(R/I_n)}{n^d}$存在其中{I = I n}$\mathcal {I}=\lbrace I_n\rbrace$是noether局部环(R,m) $(R,\mathfrak {m})$尺寸d小于1 $d\geqslant 1$与dim (N (R)) &lt;D $\dim (N(\hat{R}))&lt;d$。进一步证明了“体积=多重性”公式和Minkowski不等式对这类理想族成立。对于形式为J =()的弱分级理想族,我们研究了e W (J) $e_W(\mathcal {J})$的一些性质。我想{:K) }$\mathcal {J}=\lbrace (I_n:K)\rbrace$其中{I n}$\lbrace I_n\rbrace$是一个m $\mathfrak {m}$ -初级等级的理想家族。对于形式为{(I n)的弱分级理想族,给出Minkowski不等式中相等的充分}必要条件。K) $\lbrace (I_n:K)\rbrace$其中{I n}$\lbrace I_n\rbrace$是有界过滤。此外,我们推广了Rees的结果,该结果描述了上述理想族具有相同多重性的理想包含。 最后,研究了长度函数R (H) m 0 (R /()的渐近性质。我想:K)))$ \ well _R(H_{\mathfrak {m}}^0(R/(I_n:K)))$其中{I n} $\ I_n\rbrace$是理想的过滤(不是必须m $\mathfrak {m}$ -primary)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信