Skew odd orthogonal characters and interpolating Schur polynomials

IF 0.9 3区 数学 Q2 MATHEMATICS
Naihuan Jing, Zhijun Li, Xinyu Pan, Danxia Wang, Chang Ye
{"title":"Skew odd orthogonal characters and interpolating Schur polynomials","authors":"Naihuan Jing,&nbsp;Zhijun Li,&nbsp;Xinyu Pan,&nbsp;Danxia Wang,&nbsp;Chang Ye","doi":"10.1112/blms.70109","DOIUrl":null,"url":null,"abstract":"<p>We introduce two vertex operators to realize skew odd orthogonal characters <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <msub>\n <mi>o</mi>\n <mrow>\n <mi>λ</mi>\n <mo>/</mo>\n <mi>μ</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>x</mi>\n <mo>±</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$so_{\\lambda /\\mu }(\\mathbf {x}^{\\pm })$</annotation>\n </semantics></math> and derive the Cauchy identity for the skew characters via the Toeplitz–Hankel-type determinant as an analog of Schur functions. The method also gives new proofs of the Jacobi–Trudi identity and Gelfand–Tsetlin patterns for <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <msub>\n <mi>o</mi>\n <mrow>\n <mi>λ</mi>\n <mo>/</mo>\n <mi>μ</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>x</mi>\n <mo>±</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$so_{\\lambda /\\mu }(\\mathbf {x}^{\\pm })$</annotation>\n </semantics></math>. Moreover, combining the vertex operators related to characters of types <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>,</mo>\n <mi>D</mi>\n </mrow>\n <annotation>$C,D$</annotation>\n </semantics></math> (Baker, <i>J. Phys. A</i>. <b>29</b>(12) (1996), 3099–3117; Jing and Nie, <i>Ann. Combin</i>. <b>19</b> (2015), 427–442) and the new vertex operators related to <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>-type characters, we obtain three families of symmetric polynomials that interpolate among characters of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SO</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{SO}_{2n+1}(\\mathbb {C})$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SO</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{SO}_{2n}(\\mathbb {C})$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Sp</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{Sp}_{2n}(\\mathbb {C})$</annotation>\n </semantics></math>. Their transition formulae are also explicitly given among symplectic, orthogonal, and odd orthogonal characters.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2509-2530"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70109","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce two vertex operators to realize skew odd orthogonal characters s o λ / μ ( x ± ) $so_{\lambda /\mu }(\mathbf {x}^{\pm })$ and derive the Cauchy identity for the skew characters via the Toeplitz–Hankel-type determinant as an analog of Schur functions. The method also gives new proofs of the Jacobi–Trudi identity and Gelfand–Tsetlin patterns for s o λ / μ ( x ± ) $so_{\lambda /\mu }(\mathbf {x}^{\pm })$ . Moreover, combining the vertex operators related to characters of types C , D $C,D$ (Baker, J. Phys. A. 29(12) (1996), 3099–3117; Jing and Nie, Ann. Combin. 19 (2015), 427–442) and the new vertex operators related to B $B$ -type characters, we obtain three families of symmetric polynomials that interpolate among characters of SO 2 n + 1 ( C ) $\mathrm{SO}_{2n+1}(\mathbb {C})$ , SO 2 n ( C ) $\mathrm{SO}_{2n}(\mathbb {C})$ , and Sp 2 n ( C ) $\mathrm{Sp}_{2n}(\mathbb {C})$ . Their transition formulae are also explicitly given among symplectic, orthogonal, and odd orthogonal characters.

Abstract Image

Abstract Image

Abstract Image

偏奇正交特征和插值舒尔多项式
我们引入两个顶点算子来实现斜奇正交字符s o λ / μ (x±)$so_{\lambda /\mu }(\mathbf {x}^{\pm })$并通过Toeplitz-Hankel-type行列式作为Schur函数的类比,推导出倾斜字符的柯西恒等式。该方法还给出了so λ / μ (x±)的Jacobi-Trudi恒等式和Gelfand-Tsetlin模式的新证明。$so_{\lambda /\mu }(\mathbf {x}^{\pm })$。此外,结合与C、D类特征相关的顶点算子$C,D$ (Baker, J. Phys。A. 29(12) (1996), 3099-3117;静和聂,安。结合。19(2015),427-442)和与B $B$类型字符相关的新顶点操作符,我们得到了三个对称多项式族,它们在so2n + 1 (C) $\mathrm{SO}_{2n+1}(\mathbb {C})$的字符之间插值,so2n (C) $\mathrm{SO}_{2n}(\mathbb {C})$,Sp 2n (C) $\mathrm{Sp}_{2n}(\mathbb {C})$。并给出了它们在辛正交、正交和奇正交之间的转换公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信