Naihuan Jing, Zhijun Li, Xinyu Pan, Danxia Wang, Chang Ye
{"title":"Skew odd orthogonal characters and interpolating Schur polynomials","authors":"Naihuan Jing, Zhijun Li, Xinyu Pan, Danxia Wang, Chang Ye","doi":"10.1112/blms.70109","DOIUrl":null,"url":null,"abstract":"<p>We introduce two vertex operators to realize skew odd orthogonal characters <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <msub>\n <mi>o</mi>\n <mrow>\n <mi>λ</mi>\n <mo>/</mo>\n <mi>μ</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>x</mi>\n <mo>±</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$so_{\\lambda /\\mu }(\\mathbf {x}^{\\pm })$</annotation>\n </semantics></math> and derive the Cauchy identity for the skew characters via the Toeplitz–Hankel-type determinant as an analog of Schur functions. The method also gives new proofs of the Jacobi–Trudi identity and Gelfand–Tsetlin patterns for <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <msub>\n <mi>o</mi>\n <mrow>\n <mi>λ</mi>\n <mo>/</mo>\n <mi>μ</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>x</mi>\n <mo>±</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$so_{\\lambda /\\mu }(\\mathbf {x}^{\\pm })$</annotation>\n </semantics></math>. Moreover, combining the vertex operators related to characters of types <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <mo>,</mo>\n <mi>D</mi>\n </mrow>\n <annotation>$C,D$</annotation>\n </semantics></math> (Baker, <i>J. Phys. A</i>. <b>29</b>(12) (1996), 3099–3117; Jing and Nie, <i>Ann. Combin</i>. <b>19</b> (2015), 427–442) and the new vertex operators related to <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>-type characters, we obtain three families of symmetric polynomials that interpolate among characters of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SO</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{SO}_{2n+1}(\\mathbb {C})$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>SO</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{SO}_{2n}(\\mathbb {C})$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Sp</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>C</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{Sp}_{2n}(\\mathbb {C})$</annotation>\n </semantics></math>. Their transition formulae are also explicitly given among symplectic, orthogonal, and odd orthogonal characters.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2509-2530"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70109","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce two vertex operators to realize skew odd orthogonal characters and derive the Cauchy identity for the skew characters via the Toeplitz–Hankel-type determinant as an analog of Schur functions. The method also gives new proofs of the Jacobi–Trudi identity and Gelfand–Tsetlin patterns for . Moreover, combining the vertex operators related to characters of types (Baker, J. Phys. A. 29(12) (1996), 3099–3117; Jing and Nie, Ann. Combin. 19 (2015), 427–442) and the new vertex operators related to -type characters, we obtain three families of symmetric polynomials that interpolate among characters of , , and . Their transition formulae are also explicitly given among symplectic, orthogonal, and odd orthogonal characters.