{"title":"无单调性非齐次Khintchine-Groshev定理","authors":"Seongmin Kim","doi":"10.1112/blms.70114","DOIUrl":null,"url":null,"abstract":"<p>The Khintchine–Groshev theorem in Diophantine approximation theory says that there is a dichotomy of the Lebesgue measure of sets of <span></span><math>\n <semantics>\n <mi>ψ</mi>\n <annotation>$\\psi$</annotation>\n </semantics></math>-approximable numbers, given a monotonic function <span></span><math>\n <semantics>\n <mi>ψ</mi>\n <annotation>$\\psi$</annotation>\n </semantics></math>. Allen and Ramírez removed the monotonicity condition from the inhomogeneous Khintchine–Groshev theorem for cases with <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mi>m</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$nm\\geqslant 3$</annotation>\n </semantics></math> and conjectured that it also holds for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mi>m</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$nm=2$</annotation>\n </semantics></math>. In this paper, we prove this conjecture in the case of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n,m)=(2,1)$</annotation>\n </semantics></math>. We also prove it for the case of <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(n,m)=(1,2)$</annotation>\n </semantics></math> with a rational inhomogeneous parameter.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2639-2657"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70114","citationCount":"0","resultStr":"{\"title\":\"Inhomogeneous Khintchine–Groshev theorem without monotonicity\",\"authors\":\"Seongmin Kim\",\"doi\":\"10.1112/blms.70114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Khintchine–Groshev theorem in Diophantine approximation theory says that there is a dichotomy of the Lebesgue measure of sets of <span></span><math>\\n <semantics>\\n <mi>ψ</mi>\\n <annotation>$\\\\psi$</annotation>\\n </semantics></math>-approximable numbers, given a monotonic function <span></span><math>\\n <semantics>\\n <mi>ψ</mi>\\n <annotation>$\\\\psi$</annotation>\\n </semantics></math>. Allen and Ramírez removed the monotonicity condition from the inhomogeneous Khintchine–Groshev theorem for cases with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mi>m</mi>\\n <mo>⩾</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$nm\\\\geqslant 3$</annotation>\\n </semantics></math> and conjectured that it also holds for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mi>m</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$nm=2$</annotation>\\n </semantics></math>. In this paper, we prove this conjecture in the case of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n,m)=(2,1)$</annotation>\\n </semantics></math>. We also prove it for the case of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(n,m)=(1,2)$</annotation>\\n </semantics></math> with a rational inhomogeneous parameter.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2639-2657\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70114\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70114\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70114","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
丢芬图近似理论中的Khintchine-Groshev定理说,给定一个单调函数ψ $\psi$, ψ $\psi$ -可近似数集合的勒贝格测度有一个二分法。Allen和Ramírez在n m大于或等于3 $nm\geqslant 3$的情况下从非齐次Khintchine-Groshev定理中去除单调性条件,并推测它也适用于n m = 2$nm=2$。本文在(n, m) = (2,1) $(n,m)=(2,1)$的情况下证明了这个猜想。对于(n, m) = (1,2) $(n,m)=(1,2)$具有有理非齐次参数的情况,我们也证明了这一点。
Inhomogeneous Khintchine–Groshev theorem without monotonicity
The Khintchine–Groshev theorem in Diophantine approximation theory says that there is a dichotomy of the Lebesgue measure of sets of -approximable numbers, given a monotonic function . Allen and Ramírez removed the monotonicity condition from the inhomogeneous Khintchine–Groshev theorem for cases with and conjectured that it also holds for . In this paper, we prove this conjecture in the case of . We also prove it for the case of with a rational inhomogeneous parameter.