非正Yamabe不变量毛细管cmc超曲面的面积估计

IF 0.9 3区 数学 Q2 MATHEMATICS
Leandro F. Pessoa, Erisvaldo Véras, Bruno Vieira
{"title":"非正Yamabe不变量毛细管cmc超曲面的面积估计","authors":"Leandro F. Pessoa,&nbsp;Erisvaldo Véras,&nbsp;Bruno Vieira","doi":"10.1112/blms.70118","DOIUrl":null,"url":null,"abstract":"<p>We prove area estimates for stable capillary <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mi>m</mi>\n <mi>c</mi>\n </mrow>\n <annotation>$cmc$</annotation>\n </semantics></math> (minimal) hypersurfaces <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> with nonpositive Yamabe invariant that are properly immersed in a Riemannian <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> with scalar curvature <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>M</mi>\n </msup>\n <annotation>$R^M$</annotation>\n </semantics></math> and mean curvature of the boundary <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mrow>\n <mi>∂</mi>\n <mi>M</mi>\n </mrow>\n </msup>\n <annotation>$H^{\\partial M}$</annotation>\n </semantics></math> bounded from below. We also prove a local rigidity result in the case <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> is embedded and <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$\\mathcal {J}$</annotation>\n </semantics></math>-energy-minimizing. In this case, we show that <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> locally splits along <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> and is isometric to <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>ε</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <mo>×</mo>\n <mi>Σ</mi>\n <mo>,</mo>\n <mi>d</mi>\n <msup>\n <mi>t</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n <mi>H</mi>\n <mi>t</mi>\n </mrow>\n </msup>\n <mrow>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(-\\varepsilon,\\varepsilon)\\times \\Sigma, dt^2 + e^{-2Ht}g)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> is Einstein or Ricci flat, <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$H\\geqslant 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Σ</mi>\n </mrow>\n <annotation>$\\partial \\Sigma$</annotation>\n </semantics></math> is totally geodesic.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2708-2722"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Area estimates for capillary cmc hypersurfaces with nonpositive Yamabe invariant\",\"authors\":\"Leandro F. Pessoa,&nbsp;Erisvaldo Véras,&nbsp;Bruno Vieira\",\"doi\":\"10.1112/blms.70118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove area estimates for stable capillary <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n <mi>m</mi>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$cmc$</annotation>\\n </semantics></math> (minimal) hypersurfaces <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> with nonpositive Yamabe invariant that are properly immersed in a Riemannian <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional manifold <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> with scalar curvature <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>M</mi>\\n </msup>\\n <annotation>$R^M$</annotation>\\n </semantics></math> and mean curvature of the boundary <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mi>∂</mi>\\n <mi>M</mi>\\n </mrow>\\n </msup>\\n <annotation>$H^{\\\\partial M}$</annotation>\\n </semantics></math> bounded from below. We also prove a local rigidity result in the case <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> is embedded and <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$\\\\mathcal {J}$</annotation>\\n </semantics></math>-energy-minimizing. In this case, we show that <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> locally splits along <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> and is isometric to <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>ε</mi>\\n <mo>,</mo>\\n <mi>ε</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>×</mo>\\n <mi>Σ</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <msup>\\n <mi>t</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>H</mi>\\n <mi>t</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mi>g</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$(-\\\\varepsilon,\\\\varepsilon)\\\\times \\\\Sigma, dt^2 + e^{-2Ht}g)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> is Einstein or Ricci flat, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>⩾</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$H\\\\geqslant 0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>Σ</mi>\\n </mrow>\\n <annotation>$\\\\partial \\\\Sigma$</annotation>\\n </semantics></math> is totally geodesic.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2708-2722\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70118\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了稳定毛细管c cm c $cmc$(极小)超曲面Σ $\Sigma$的面积估计,这些曲面具有非正的Yamabe不变量,适当地浸入到riemann $n$维流形m中$M$标量曲率R M $R^M$和边界H∂M $H^{\partial M}$的平均曲率从下面开始。我们还证明了Σ $\Sigma$嵌入和J $\mathcal {J}$ -能量最小化情况下的局部刚度结果。在这种情况下,我们证明M $M$局部沿Σ $\Sigma$分裂,并与(−ε, ε) × Σ等距,d t 2 + e - 2 H t g) $(-\varepsilon,\varepsilon)\times \Sigma, dt^2 + e^{-2Ht}g)$,其中g $g$是爱因斯坦或里奇平坦,H小于0 $H\geqslant 0$和∂Σ $\partial \Sigma$是完全测地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Area estimates for capillary cmc hypersurfaces with nonpositive Yamabe invariant

Area estimates for capillary cmc hypersurfaces with nonpositive Yamabe invariant

Area estimates for capillary cmc hypersurfaces with nonpositive Yamabe invariant

We prove area estimates for stable capillary c m c $cmc$ (minimal) hypersurfaces Σ $\Sigma$ with nonpositive Yamabe invariant that are properly immersed in a Riemannian n $n$ -dimensional manifold M $M$ with scalar curvature R M $R^M$ and mean curvature of the boundary H M $H^{\partial M}$ bounded from below. We also prove a local rigidity result in the case Σ $\Sigma$ is embedded and J $\mathcal {J}$ -energy-minimizing. In this case, we show that M $M$ locally splits along Σ $\Sigma$ and is isometric to ( ε , ε ) × Σ , d t 2 + e 2 H t g ) $(-\varepsilon,\varepsilon)\times \Sigma, dt^2 + e^{-2Ht}g)$ , where g $g$ is Einstein or Ricci flat, H 0 $H\geqslant 0$ and Σ $\partial \Sigma$ is totally geodesic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信