{"title":"非正Yamabe不变量毛细管cmc超曲面的面积估计","authors":"Leandro F. Pessoa, Erisvaldo Véras, Bruno Vieira","doi":"10.1112/blms.70118","DOIUrl":null,"url":null,"abstract":"<p>We prove area estimates for stable capillary <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mi>m</mi>\n <mi>c</mi>\n </mrow>\n <annotation>$cmc$</annotation>\n </semantics></math> (minimal) hypersurfaces <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> with nonpositive Yamabe invariant that are properly immersed in a Riemannian <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> with scalar curvature <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>M</mi>\n </msup>\n <annotation>$R^M$</annotation>\n </semantics></math> and mean curvature of the boundary <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mrow>\n <mi>∂</mi>\n <mi>M</mi>\n </mrow>\n </msup>\n <annotation>$H^{\\partial M}$</annotation>\n </semantics></math> bounded from below. We also prove a local rigidity result in the case <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> is embedded and <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$\\mathcal {J}$</annotation>\n </semantics></math>-energy-minimizing. In this case, we show that <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> locally splits along <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> and is isometric to <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>ε</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <mo>×</mo>\n <mi>Σ</mi>\n <mo>,</mo>\n <mi>d</mi>\n <msup>\n <mi>t</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n <mi>H</mi>\n <mi>t</mi>\n </mrow>\n </msup>\n <mrow>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(-\\varepsilon,\\varepsilon)\\times \\Sigma, dt^2 + e^{-2Ht}g)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> is Einstein or Ricci flat, <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$H\\geqslant 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Σ</mi>\n </mrow>\n <annotation>$\\partial \\Sigma$</annotation>\n </semantics></math> is totally geodesic.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2708-2722"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Area estimates for capillary cmc hypersurfaces with nonpositive Yamabe invariant\",\"authors\":\"Leandro F. Pessoa, Erisvaldo Véras, Bruno Vieira\",\"doi\":\"10.1112/blms.70118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove area estimates for stable capillary <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n <mi>m</mi>\\n <mi>c</mi>\\n </mrow>\\n <annotation>$cmc$</annotation>\\n </semantics></math> (minimal) hypersurfaces <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> with nonpositive Yamabe invariant that are properly immersed in a Riemannian <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>-dimensional manifold <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> with scalar curvature <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>M</mi>\\n </msup>\\n <annotation>$R^M$</annotation>\\n </semantics></math> and mean curvature of the boundary <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mi>∂</mi>\\n <mi>M</mi>\\n </mrow>\\n </msup>\\n <annotation>$H^{\\\\partial M}$</annotation>\\n </semantics></math> bounded from below. We also prove a local rigidity result in the case <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> is embedded and <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$\\\\mathcal {J}$</annotation>\\n </semantics></math>-energy-minimizing. In this case, we show that <span></span><math>\\n <semantics>\\n <mi>M</mi>\\n <annotation>$M$</annotation>\\n </semantics></math> locally splits along <span></span><math>\\n <semantics>\\n <mi>Σ</mi>\\n <annotation>$\\\\Sigma$</annotation>\\n </semantics></math> and is isometric to <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <mi>ε</mi>\\n <mo>,</mo>\\n <mi>ε</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>×</mo>\\n <mi>Σ</mi>\\n <mo>,</mo>\\n <mi>d</mi>\\n <msup>\\n <mi>t</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <msup>\\n <mi>e</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n <mi>H</mi>\\n <mi>t</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mi>g</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$(-\\\\varepsilon,\\\\varepsilon)\\\\times \\\\Sigma, dt^2 + e^{-2Ht}g)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math> is Einstein or Ricci flat, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>⩾</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$H\\\\geqslant 0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>Σ</mi>\\n </mrow>\\n <annotation>$\\\\partial \\\\Sigma$</annotation>\\n </semantics></math> is totally geodesic.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 9\",\"pages\":\"2708-2722\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70118\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了稳定毛细管c cm c $cmc$(极小)超曲面Σ $\Sigma$的面积估计,这些曲面具有非正的Yamabe不变量,适当地浸入到riemann $n$维流形m中$M$标量曲率R M $R^M$和边界H∂M $H^{\partial M}$的平均曲率从下面开始。我们还证明了Σ $\Sigma$嵌入和J $\mathcal {J}$ -能量最小化情况下的局部刚度结果。在这种情况下,我们证明M $M$局部沿Σ $\Sigma$分裂,并与(−ε, ε) × Σ等距,d t 2 + e - 2 H t g) $(-\varepsilon,\varepsilon)\times \Sigma, dt^2 + e^{-2Ht}g)$,其中g $g$是爱因斯坦或里奇平坦,H小于0 $H\geqslant 0$和∂Σ $\partial \Sigma$是完全测地线。
Area estimates for capillary cmc hypersurfaces with nonpositive Yamabe invariant
We prove area estimates for stable capillary (minimal) hypersurfaces with nonpositive Yamabe invariant that are properly immersed in a Riemannian -dimensional manifold with scalar curvature and mean curvature of the boundary bounded from below. We also prove a local rigidity result in the case is embedded and -energy-minimizing. In this case, we show that locally splits along and is isometric to , where is Einstein or Ricci flat, and is totally geodesic.