Lorena Aguirre Salazar, Xin Yang Lu, Jun-cheng Wei
{"title":"一个大田川崎模型设置在空间","authors":"Lorena Aguirre Salazar, Xin Yang Lu, Jun-cheng Wei","doi":"10.1112/blms.70105","DOIUrl":null,"url":null,"abstract":"<p>We examine a nonlocal diffuse interface energy with Coulomb repulsion in three dimensions inspired by the Thomas–Fermi–Dirac–von Weizsäcker, and the Ohta–Kawasaki models. We consider the corresponding mass-constrained variational problem and show the existence of minimizers for small masses, and the absence of minimizers for large masses.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2462-2476"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ohta–Kawasaki model set on the space\",\"authors\":\"Lorena Aguirre Salazar, Xin Yang Lu, Jun-cheng Wei\",\"doi\":\"10.1112/blms.70105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We examine a nonlocal diffuse interface energy with Coulomb repulsion in three dimensions inspired by the Thomas–Fermi–Dirac–von Weizsäcker, and the Ohta–Kawasaki models. We consider the corresponding mass-constrained variational problem and show the existence of minimizers for small masses, and the absence of minimizers for large masses.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2462-2476\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70105\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70105","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We examine a nonlocal diffuse interface energy with Coulomb repulsion in three dimensions inspired by the Thomas–Fermi–Dirac–von Weizsäcker, and the Ohta–Kawasaki models. We consider the corresponding mass-constrained variational problem and show the existence of minimizers for small masses, and the absence of minimizers for large masses.