拟齐次奇异平面曲线的poincarcarr多项式

IF 0.9 3区 数学 Q2 MATHEMATICS
Piotr Pokora
{"title":"拟齐次奇异平面曲线的poincarcarr多项式","authors":"Piotr Pokora","doi":"10.1112/blms.70112","DOIUrl":null,"url":null,"abstract":"<p>We define a combinatorial object that can be associated with any conic-line arrangement with ordinary singularities, which we call the combinatorial Poincaré polynomial. We prove a Terao-type factorization statement on the splitting of such a polynomial over the rationals under the assumption that our conic-line arrangements are free and admit ordinary quasi-homogeneous singularities. Then we focus on the so-called <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-arrangements in the plane. In particular, we provide a combinatorial constraint for free <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-arrangements admitting ordinary quasi-homogeneous singularities.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2549-2560"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Poincaré polynomials for plane curves with quasi-homogeneous singularities\",\"authors\":\"Piotr Pokora\",\"doi\":\"10.1112/blms.70112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define a combinatorial object that can be associated with any conic-line arrangement with ordinary singularities, which we call the combinatorial Poincaré polynomial. We prove a Terao-type factorization statement on the splitting of such a polynomial over the rationals under the assumption that our conic-line arrangements are free and admit ordinary quasi-homogeneous singularities. Then we focus on the so-called <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-arrangements in the plane. In particular, we provide a combinatorial constraint for free <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-arrangements admitting ordinary quasi-homogeneous singularities.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 8\",\"pages\":\"2549-2560\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70112\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70112","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了一个组合对象,它可以与任何具有一般奇点的圆锥线排列相关联,我们称之为组合庞卡罗多项式。在我们的圆锥线安排是自由的并且允许一般拟齐次奇点的假设下,我们证明了一个关于这种多项式在有理数上的分裂的terao型分解命题。然后我们关注所谓的平面上的d$ d$排列。特别地,我们提供了一个允许普通拟齐次奇点的自由d$ d$排列的组合约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Poincaré polynomials for plane curves with quasi-homogeneous singularities

On Poincaré polynomials for plane curves with quasi-homogeneous singularities

On Poincaré polynomials for plane curves with quasi-homogeneous singularities

On Poincaré polynomials for plane curves with quasi-homogeneous singularities

We define a combinatorial object that can be associated with any conic-line arrangement with ordinary singularities, which we call the combinatorial Poincaré polynomial. We prove a Terao-type factorization statement on the splitting of such a polynomial over the rationals under the assumption that our conic-line arrangements are free and admit ordinary quasi-homogeneous singularities. Then we focus on the so-called d $d$ -arrangements in the plane. In particular, we provide a combinatorial constraint for free d $d$ -arrangements admitting ordinary quasi-homogeneous singularities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信