Area estimates for capillary cmc hypersurfaces with nonpositive Yamabe invariant

IF 0.9 3区 数学 Q2 MATHEMATICS
Leandro F. Pessoa, Erisvaldo Véras, Bruno Vieira
{"title":"Area estimates for capillary cmc hypersurfaces with nonpositive Yamabe invariant","authors":"Leandro F. Pessoa,&nbsp;Erisvaldo Véras,&nbsp;Bruno Vieira","doi":"10.1112/blms.70118","DOIUrl":null,"url":null,"abstract":"<p>We prove area estimates for stable capillary <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mi>m</mi>\n <mi>c</mi>\n </mrow>\n <annotation>$cmc$</annotation>\n </semantics></math> (minimal) hypersurfaces <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> with nonpositive Yamabe invariant that are properly immersed in a Riemannian <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> with scalar curvature <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>M</mi>\n </msup>\n <annotation>$R^M$</annotation>\n </semantics></math> and mean curvature of the boundary <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mrow>\n <mi>∂</mi>\n <mi>M</mi>\n </mrow>\n </msup>\n <annotation>$H^{\\partial M}$</annotation>\n </semantics></math> bounded from below. We also prove a local rigidity result in the case <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> is embedded and <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$\\mathcal {J}$</annotation>\n </semantics></math>-energy-minimizing. In this case, we show that <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> locally splits along <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> and is isometric to <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>ε</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <mo>×</mo>\n <mi>Σ</mi>\n <mo>,</mo>\n <mi>d</mi>\n <msup>\n <mi>t</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n <mi>H</mi>\n <mi>t</mi>\n </mrow>\n </msup>\n <mrow>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(-\\varepsilon,\\varepsilon)\\times \\Sigma, dt^2 + e^{-2Ht}g)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> is Einstein or Ricci flat, <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$H\\geqslant 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Σ</mi>\n </mrow>\n <annotation>$\\partial \\Sigma$</annotation>\n </semantics></math> is totally geodesic.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2708-2722"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove area estimates for stable capillary c m c $cmc$ (minimal) hypersurfaces Σ $\Sigma$ with nonpositive Yamabe invariant that are properly immersed in a Riemannian n $n$ -dimensional manifold M $M$ with scalar curvature R M $R^M$ and mean curvature of the boundary H M $H^{\partial M}$ bounded from below. We also prove a local rigidity result in the case Σ $\Sigma$ is embedded and J $\mathcal {J}$ -energy-minimizing. In this case, we show that M $M$ locally splits along Σ $\Sigma$ and is isometric to ( ε , ε ) × Σ , d t 2 + e 2 H t g ) $(-\varepsilon,\varepsilon)\times \Sigma, dt^2 + e^{-2Ht}g)$ , where g $g$ is Einstein or Ricci flat, H 0 $H\geqslant 0$ and Σ $\partial \Sigma$ is totally geodesic.

Abstract Image

Abstract Image

非正Yamabe不变量毛细管cmc超曲面的面积估计
我们证明了稳定毛细管c cm c $cmc$(极小)超曲面Σ $\Sigma$的面积估计,这些曲面具有非正的Yamabe不变量,适当地浸入到riemann $n$维流形m中$M$标量曲率R M $R^M$和边界H∂M $H^{\partial M}$的平均曲率从下面开始。我们还证明了Σ $\Sigma$嵌入和J $\mathcal {J}$ -能量最小化情况下的局部刚度结果。在这种情况下,我们证明M $M$局部沿Σ $\Sigma$分裂,并与(−ε, ε) × Σ等距,d t 2 + e - 2 H t g) $(-\varepsilon,\varepsilon)\times \Sigma, dt^2 + e^{-2Ht}g)$,其中g $g$是爱因斯坦或里奇平坦,H小于0 $H\geqslant 0$和∂Σ $\partial \Sigma$是完全测地线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信