{"title":"Area estimates for capillary cmc hypersurfaces with nonpositive Yamabe invariant","authors":"Leandro F. Pessoa, Erisvaldo Véras, Bruno Vieira","doi":"10.1112/blms.70118","DOIUrl":null,"url":null,"abstract":"<p>We prove area estimates for stable capillary <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mi>m</mi>\n <mi>c</mi>\n </mrow>\n <annotation>$cmc$</annotation>\n </semantics></math> (minimal) hypersurfaces <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> with nonpositive Yamabe invariant that are properly immersed in a Riemannian <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>-dimensional manifold <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> with scalar curvature <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>M</mi>\n </msup>\n <annotation>$R^M$</annotation>\n </semantics></math> and mean curvature of the boundary <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mrow>\n <mi>∂</mi>\n <mi>M</mi>\n </mrow>\n </msup>\n <annotation>$H^{\\partial M}$</annotation>\n </semantics></math> bounded from below. We also prove a local rigidity result in the case <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> is embedded and <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$\\mathcal {J}$</annotation>\n </semantics></math>-energy-minimizing. In this case, we show that <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math> locally splits along <span></span><math>\n <semantics>\n <mi>Σ</mi>\n <annotation>$\\Sigma$</annotation>\n </semantics></math> and is isometric to <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <mi>ε</mi>\n <mo>,</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <mo>×</mo>\n <mi>Σ</mi>\n <mo>,</mo>\n <mi>d</mi>\n <msup>\n <mi>t</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <msup>\n <mi>e</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n <mi>H</mi>\n <mi>t</mi>\n </mrow>\n </msup>\n <mrow>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$(-\\varepsilon,\\varepsilon)\\times \\Sigma, dt^2 + e^{-2Ht}g)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math> is Einstein or Ricci flat, <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>⩾</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$H\\geqslant 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Σ</mi>\n </mrow>\n <annotation>$\\partial \\Sigma$</annotation>\n </semantics></math> is totally geodesic.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 9","pages":"2708-2722"},"PeriodicalIF":0.9000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70118","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove area estimates for stable capillary (minimal) hypersurfaces with nonpositive Yamabe invariant that are properly immersed in a Riemannian -dimensional manifold with scalar curvature and mean curvature of the boundary bounded from below. We also prove a local rigidity result in the case is embedded and -energy-minimizing. In this case, we show that locally splits along and is isometric to , where is Einstein or Ricci flat, and is totally geodesic.