Construction of a curved Kakeya set

IF 0.9 3区 数学 Q2 MATHEMATICS
Tongou Yang, Yue Zhong
{"title":"Construction of a curved Kakeya set","authors":"Tongou Yang,&nbsp;Yue Zhong","doi":"10.1112/blms.70110","DOIUrl":null,"url":null,"abstract":"<p>We construct a compact set in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>$\\mathbb {R}^2$</annotation>\n </semantics></math> of measure 0 containing a piece of a parabola of every aperture between 1 and 2. As a consequence, we improve lower bounds for the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n <annotation>$L^q$</annotation>\n </semantics></math> norm of the corresponding maximal operator for a range of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$p,q$</annotation>\n </semantics></math>. Moreover, our construction can be generalised from parabolas to a family of <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mn>2</mn>\n </msup>\n <annotation>$C^2$</annotation>\n </semantics></math> curves satisfying suitable curvature conditions.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 8","pages":"2531-2548"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/blms.70110","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a compact set in R 2 $\mathbb {R}^2$ of measure 0 containing a piece of a parabola of every aperture between 1 and 2. As a consequence, we improve lower bounds for the L p $L^p$ - L q $L^q$ norm of the corresponding maximal operator for a range of p , q $p,q$ . Moreover, our construction can be generalised from parabolas to a family of C 2 $C^2$ curves satisfying suitable curvature conditions.

Abstract Image

Abstract Image

Abstract Image

一个弯曲的Kakeya集合的构造
我们在r2 $\mathbb {R}^2$中构造一个测度0的紧集,其中包含1到2之间每个孔径的抛物线。因此,我们改进了p$ L^p$ - L q$ L^q$范数在p$,q$ p,q$范围内对应的极大算子的下界。此外,我们的构造可以由抛物线推广到满足适当曲率条件的c2 $C^2$曲线族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信